Display options
Share it on

Stem Cells Int. 2014;2014:197154. doi: 10.1155/2014/197154. Epub 2014 Mar 31.

Magnetic Nanoparticle Based Nonviral MicroRNA Delivery into Freshly Isolated CD105(+) hMSCs.

Stem cells international

Anna Schade, Paula Müller, Evgenya Delyagina, Natalia Voronina, Anna Skorska, Cornelia Lux, Gustav Steinhoff, Robert David

Affiliations

  1. Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Schillingallee 35, 18057 Rostock, Germany.

PMID: 24799915 PMCID: PMC3988711 DOI: 10.1155/2014/197154

Abstract

Genetic modifications of bone marrow derived human mesenchymal stem cells (hMSCs) using microRNAs (miRs) may be used to improve their therapeutic potential and enable innovative strategies in tissue regeneration. However, most of the studies use cultured hMSCs, although these can lose their stem cell characteristics during expansion. Therefore, we aimed to develop a nonviral miR carrier based on polyethylenimine (PEI) bound to magnetic nanoparticles (MNPs) for efficient miR delivery in freshly isolated hMSCs. MNP based transfection is preferable for genetic modifications in vivo due to improved selectivity, safety of delivery, and reduced side effects. Thus, in this study different miR/PEI and miR/PEI/MNP complex formulations were tested in vitro for uptake efficiency and cytotoxicity with respect to the influence of an external magnetic field. Afterwards, optimized magnetic complexes were selected and compared to commercially available magnetic vectors (Magnetofectamine, CombiMag). We found that all tested transfection reagents had high miR uptake rates (yielded over 60%) and no significant cytotoxic effects. Our work may become crucial for virus-free introduction of therapeutic miRs as well as other nucleic acids in vivo. Moreover, in the field of targeted stem cell therapy nucleic acid delivery prior to transplantation may allowfor initial cell modulation in vitro.

References

  1. J Gene Med. 2008 Aug;10(8):897-909 - PubMed
  2. J Control Release. 2007 Oct 18;123(1):1-10 - PubMed
  3. Nanomedicine (Lond). 2011 Nov;6(9):1593-604 - PubMed
  4. J Gene Med. 2004 Aug;6(8):923-36 - PubMed
  5. Stem Cells Int. 2013;2013:698076 - PubMed
  6. PLoS One. 2011 Feb 10;6(2):e15652 - PubMed
  7. Adv Drug Deliv Rev. 2011 Nov;63(14-15):1300-31 - PubMed
  8. Cytotherapy. 2006;8(4):315-7 - PubMed
  9. Hum Gene Ther. 2008 Feb;19(2):111-24 - PubMed
  10. PLoS One. 2012;7(12):e51350 - PubMed
  11. Nanomedicine (Lond). 2014 May;9(7):999-1017 - PubMed
  12. Stem Cells. 2006 Jul;24(7):1728-37 - PubMed
  13. Circ Res. 2004 Jul 9;95(1):9-20 - PubMed
  14. Int J Mol Med. 2013 Feb;31(2):484-92 - PubMed
  15. Folia Histochem Cytobiol. 2006;44(4):215-30 - PubMed
  16. Cell Death Differ. 2011 Jun;18(6):985-95 - PubMed
  17. Cardiol J. 2011;18(6):675-81 - PubMed
  18. Int J Mol Sci. 2013 May 23;14(6):10710-26 - PubMed
  19. J Biomed Mater Res A. 2010 Jan;92(1):386-92 - PubMed
  20. Nano Lett. 2010 Oct 13;10(10):3914-21 - PubMed
  21. J Cell Physiol. 2007 Nov;213(2):341-7 - PubMed
  22. Hum Gene Ther. 2011 Jan;22(1):3-17 - PubMed
  23. J Control Release. 2002 Aug 21;82(2-3):441-54 - PubMed
  24. Cardiovasc Res. 2012 Mar 15;93(4):614-22 - PubMed
  25. J Cell Mol Med. 2011 Sep;15(9):1989-98 - PubMed
  26. PLoS One. 2012;7(7):e39490 - PubMed
  27. J Cell Mol Med. 2012 Apr;16(4):657-71 - PubMed
  28. Chem Rev. 2009 Feb;109(2):259-302 - PubMed
  29. Cell Mol Biol (Noisy-le-grand). 2005 Sep 02;51(1):3-22 - PubMed
  30. Leukemia. 2003 Jan;17(1):160-70 - PubMed
  31. Gene Ther. 2002 Jan;9(2):102-9 - PubMed
  32. J Control Release. 1999 Aug 5;60(2-3):149-60 - PubMed
  33. Biomaterials. 2006 Jun;27(17):3333-8 - PubMed

Publication Types