Display options
Share it on

Meas Sci Technol. 2013;24(10):105405. doi: 10.1088/0957-0233/24/10/105405.

Multi-modal molecular diffuse optical tomography system for small animal imaging.

Measurement science & technology

James A Guggenheim, Hector R A Basevi, Jon Frampton, Iain B Styles, Hamid Dehghani

Affiliations

  1. Physical Science of Imaging in the Biomedical Sciences Doctoral Training Centre, College of Engineering and Physical Sciences, University of Birmingham, UK ; School of Computer Science, College of Engineering and Physical Sciences, University of Birmingham, UK.
  2. School of Immunity and Infection, College of Medicine and Dentistry, University of Birmingham, UK.
  3. School of Computer Science, College of Engineering and Physical Sciences, University of Birmingham, UK.

PMID: 24954977 PMCID: PMC4061700 DOI: 10.1088/0957-0233/24/10/105405

Abstract

A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images.

Keywords: Bioluminescence Imaging; Bioluminescence Tomography; Diffuse Optical Tomography; Image Reconstruction; Imaging Systems; Molecular Imaging; Multimodality; Small Animal Imaging; Surface Capture

References

  1. Mol Imaging Biol. 2011 Feb;13(1):53-8 - PubMed
  2. Biomed Opt Express. 2012 Sep 1;3(9):2131-41 - PubMed
  3. Opt Lett. 2007 Feb 15;32(4):382-4 - PubMed
  4. Nat Biotechnol. 2005 Mar;23(3):313-20 - PubMed
  5. IEEE Trans Med Imaging. 2010 Feb;29(2):465-73 - PubMed
  6. IEEE Trans Nucl Sci. 2008 Oct 1;55(5):2541-2545 - PubMed
  7. Appl Opt. 2008 Apr 20;47(12):2011-6 - PubMed
  8. Biomed Opt Express. 2010 Jul 15;1(1):143-156 - PubMed
  9. Opt Lett. 2010 Jul 1;35(13):2121-3 - PubMed
  10. Opt Express. 2005 Apr 4;13(7):2564-77 - PubMed
  11. Opt Express. 2009 Sep 14;17(19):16834-48 - PubMed
  12. Opt Express. 2009 Apr 27;17(9):7571-85 - PubMed
  13. Opt Express. 2008 Feb 4;16(3):1481-6 - PubMed
  14. IEEE Trans Nucl Sci. 2004 Jun;51(3):752-756 - PubMed
  15. Med Phys. 2010 Jan;37(1):329-38 - PubMed
  16. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8828-33 - PubMed
  17. J Biomed Opt. 2011 Oct;16(10):106015 - PubMed
  18. Med Phys. 2007 Nov;34(11):4293-301 - PubMed
  19. Opt Lett. 2006 Feb 1;31(3):365-7 - PubMed
  20. Radiology. 2001 Jan;218(1):261-6 - PubMed
  21. Phys Med Biol. 2005 Dec 7;50(23):5421-41 - PubMed
  22. J Biomed Opt. 2007 Mar-Apr;12(2):024007 - PubMed
  23. IEEE Trans Biomed Eng. 2010 Sep;57(9):2229-38 - PubMed
  24. Biomed Opt Express. 2010 Aug 05;1(2):512-526 - PubMed
  25. Opt Express. 2010 Jun 7;18(12):13102-13 - PubMed
  26. Med Phys. 2008 Nov;35(11):4863-71 - PubMed
  27. Phys Med Biol. 2005 Sep 7;50(17):4225-41 - PubMed
  28. Appl Opt. 2009 Mar 1;48(7):1328-36 - PubMed
  29. Proc SPIE Int Soc Opt Eng. 2014 Feb 19;8937: - PubMed
  30. Phys Med Biol. 2006 Apr 21;51(8):2045-53 - PubMed
  31. Commun Numer Methods Eng. 2009 Jun;25(6):639-656 - PubMed
  32. Nat Med. 2002 Jul;8(7):757-60 - PubMed
  33. Opt Express. 2008 Feb 4;16(3):1719-32 - PubMed
  34. J Biomed Opt. 2013 Mar;18(3):036006 - PubMed
  35. Appl Opt. 2010 Oct 10;49(29):5654-64 - PubMed
  36. Int J Biomed Imaging. 2007;2007:86741 - PubMed
  37. Front Biosci. 2008 Jan 01;13:1281-93 - PubMed
  38. Adv Exp Med Biol. 2003;530:85-99 - PubMed
  39. J Photochem Photobiol B. 2010 Jan 21;98(1):77-94 - PubMed
  40. Opt Express. 2013 Mar 25;21(6):7222-39 - PubMed
  41. Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732 - PubMed
  42. Appl Opt. 2007 Aug 1;46(22):4896-906 - PubMed
  43. Phys Med Biol. 2010 Jun 21;55(12):3381-99 - PubMed
  44. Radiology. 2007 May;243(2):350-9 - PubMed
  45. Opt Express. 2004 Aug 23;12(17):3996-4000 - PubMed
  46. Phys Med Biol. 2010 May 7;55(9):2693-708 - PubMed
  47. Anal Biochem. 2010 Jan 15;396(2):290-7 - PubMed
  48. Annu Rev Biomed Eng. 2002;4:235-60 - PubMed
  49. Biomed Opt Express. 2011 Nov 1;2(11):3021-36 - PubMed
  50. Rev Sci Instrum. 2009 Apr;80(4):043701 - PubMed
  51. Rev Sci Instrum. 2010 May;81(5):054304 - PubMed
  52. Ann Biomed Eng. 2010 Nov;38(11):3440-8 - PubMed
  53. Opt Express. 2009 Aug 17;17(17):14481-94 - PubMed
  54. Rev Sci Instrum. 2012 Apr;83(4):043708 - PubMed
  55. Med Phys. 2011 Nov;38(11):5933-44 - PubMed
  56. Opt Express. 2010 Sep 13;18(19):19876-93 - PubMed
  57. Int J Biomed Imaging. 2006;2006:58601 - PubMed
  58. Biotechniques. 2007 Jul;43(1 Suppl):7-13, 30 - PubMed
  59. Technol Cancer Res Treat. 2006 Aug;5(4):351-63 - PubMed

Publication Types

Grant support