Display options
Share it on

Biodivers Conserv. 2014;23:1845-1858. doi: 10.1007/s10531-014-0653-2. Epub 2014 Mar 02.

Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration.

Biodiversity and conservation

Ulf Karsten, Andreas Holzinger

Affiliations

  1. Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.
  2. Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.

PMID: 24954980 PMCID: PMC4058318 DOI: 10.1007/s10531-014-0653-2

Abstract

Green algae are major components of biological soil crusts in alpine habitats. Together with cyanobacteria, fungi and lichens, green algae form a pioneer community important for the organisms that will succeed them. In their high altitudinal habitat these algae are exposed to harsh and strongly fluctuating environmental conditions, mainly intense irradiation, including ultraviolet radiation, and lack of water leading to desiccation. Therefore, green algae surviving in these environments must have evolved with either avoidance or protective strategies, as well as repair mechanisms for damage. In this review we have highlighted these mechanisms, which include photoprotection, photochemical quenching, and high osmotic values to avoid water loss, and in some groups flexibility of secondary cell walls to maintain turgor pressure even in water-limited situations. These highly specialized green algae will serve as good model organisms to study desiccation tolerance or photoprotective mechanisms, due to their natural capacity to withstand unfavorable conditions. We point out the urgent need for modern phylogenetic approaches in characterizing these organisms, and molecular methods for analyzing the metabolic changes involved in their adaptive strategies.

Keywords: Antioxidants; Biodiversity; Klebsormidium; Organic osmolytes; UV-sunscreens; Ultrastructure

References

  1. J Eukaryot Microbiol. 2013 Jul-Aug;60(4):350-62 - PubMed
  2. J Phycol. 2011 Jun;47(3):591-602 - PubMed
  3. Photosynth Res. 2008 Oct-Dec;98(1-3):541-50 - PubMed
  4. Protoplasma. 2007;231(3-4):183-92 - PubMed
  5. Planta. 2007 Mar;225(4):991-1000 - PubMed
  6. Plant Cell Environ. 2007 Oct;30(10):1240-55 - PubMed
  7. Protoplasma. 2012 Jul;249(3):789-804 - PubMed
  8. Microb Ecol. 2013 Jan;65(1):68-83 - PubMed
  9. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7123-7 - PubMed
  10. Micron. 2006;37(3):190-207 - PubMed
  11. Photosynth Res. 2013 Jul;115(2-3):139-51 - PubMed
  12. Photosynth Res. 2012 Sep;113(1-3):239-47 - PubMed
  13. Protoplasma. 2010 Jul;243(1-4):3-14 - PubMed
  14. Plant Biol (Stuttg). 2007 May;9(3):400-10 - PubMed
  15. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):364-9 - PubMed
  16. J Phycol. 2011 Jun;47(3):533-537 - PubMed
  17. Science. 2013 Jun 28;340(6140):1574-7 - PubMed
  18. Science. 1990 Apr 13;248(4952):206-8 - PubMed
  19. Front Plant Sci. 2013 Aug 22;4:327 - PubMed
  20. Microb Ecol. 2012 Jan;63(1):51-63 - PubMed
  21. Syst Biol. 2005 Dec;54(6):936-47 - PubMed
  22. Nat Prod Rep. 1998 Apr;15(2):159-72 - PubMed
  23. Planta. 2000 Sep;211(4):555-62 - PubMed
  24. Micron. 2013 Jan;44:317-30 - PubMed
  25. Planta. 1966 Mar;70(1):46-72 - PubMed
  26. Micron. 2009 Dec;40(8):831-8 - PubMed
  27. J Phycol. 2013 Aug;49(4):648-60 - PubMed
  28. Planta. 2009 Dec;231(1):195-208 - PubMed
  29. Protoplasma. 2010 Jul;243(1-4):15-24 - PubMed

Publication Types

Grant support