Display options
Share it on

Front Psychol. 2014 May 06;5:394. doi: 10.3389/fpsyg.2014.00394. eCollection 2014.

Enhanced neural synchrony between left auditory and premotor cortex is associated with successful phonetic categorization.

Frontiers in psychology

Jussi Alho, Fa-Hsuan Lin, Marc Sato, Hannu Tiitinen, Mikko Sams, Iiro P Jääskeläinen

Affiliations

  1. Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), School of Science, Aalto University Espoo, Finland.
  2. Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), School of Science, Aalto University Espoo, Finland ; Institute of Biomedical Engineering, National Taiwan University Taipei, Taiwan.
  3. Gipsa-Lab, Department of Speech and Cognition, French National Center for Scientific Research and Grenoble University Grenoble, France.
  4. Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), School of Science, Aalto University Espoo, Finland ; MEG Core, Aalto NeuroImaging, School of Science, Aalto University Espoo, Finland ; AMI Centre, Aalto NeuroImaging, School of Science, Aalto University Espoo, Finland.

PMID: 24834062 PMCID: PMC4018533 DOI: 10.3389/fpsyg.2014.00394

Abstract

The cortical dorsal auditory stream has been proposed to mediate mapping between auditory and articulatory-motor representations in speech processing. Whether this sensorimotor integration contributes to speech perception remains an open question. Here, magnetoencephalography was used to examine connectivity between auditory and motor areas while subjects were performing a sensorimotor task involving speech sound identification and overt repetition. Functional connectivity was estimated with inter-areal phase synchrony of electromagnetic oscillations. Structural equation modeling was applied to determine the direction of information flow. Compared to passive listening, engagement in the sensorimotor task enhanced connectivity within 200 ms after sound onset bilaterally between the temporoparietal junction (TPJ) and ventral premotor cortex (vPMC), with the left-hemisphere connection showing directionality from vPMC to TPJ. Passive listening to noisy speech elicited stronger connectivity than clear speech between left auditory cortex (AC) and vPMC at ~100 ms, and between left TPJ and dorsal premotor cortex (dPMC) at ~200 ms. Information flow was estimated from AC to vPMC and from dPMC to TPJ. Connectivity strength among the left AC, vPMC, and TPJ correlated positively with the identification of speech sounds within 150 ms after sound onset, with information flowing from AC to TPJ, from AC to vPMC, and from vPMC to TPJ. Taken together, these findings suggest that sensorimotor integration mediates the categorization of incoming speech sounds through reciprocal auditory-to-motor and motor-to-auditory projections.

Keywords: MEG; dorsal stream; magnetoencephalography; premotor cortex; sensorimotor integration; speech perception

References

  1. Neuroimage. 2010 Oct 15;53(1):1-15 - PubMed
  2. Cortex. 2012 Jul;48(7):882-7 - PubMed
  3. Curr Biol. 2007 Oct 9;17(19):1692-6 - PubMed
  4. Neuroimage. 2009 Apr 1;45(2):349-59 - PubMed
  5. Brain Lang. 2009 Oct;111(1):1-7 - PubMed
  6. Hum Brain Mapp. 1999;8(4):194-208 - PubMed
  7. Neural Plast. 2014;2014:216731 - PubMed
  8. Nat Rev Neurosci. 2012 Jan 11;13(2):121-34 - PubMed
  9. Cognition. 2009 Feb;110(2):222-36 - PubMed
  10. J Neurosci. 2013 Mar 20;33(12):5208-15 - PubMed
  11. Cogn Neurodyn. 2009 Sep;3(3):189-96 - PubMed
  12. Neuroimage. 2006 Oct 1;32(4):1826-36 - PubMed
  13. Hear Res. 2011 Jan;271(1-2):16-25 - PubMed
  14. Nat Neurosci. 2009 Jun;12(6):718-24 - PubMed
  15. Neuroimage. 2014 Feb 1;86:446-60 - PubMed
  16. Cereb Cortex. 2013 May;23(5):1190-7 - PubMed
  17. Nat Neurosci. 2012 Mar 18;15(4):511-7 - PubMed
  18. Multivariate Behav Res. 1990 Apr 1;25(2):173-80 - PubMed
  19. Hum Brain Mapp. 1999;8(4):272-84 - PubMed
  20. J Commun Disord. 2012 Nov-Dec;45(6):393-402 - PubMed
  21. Neuroimage. 2011 Apr 15;55(4):1548-65 - PubMed
  22. Neuron. 2011 Feb 10;69(3):407-22 - PubMed
  23. J Neurosci. 2009 Aug 5;29(31):9819-25 - PubMed
  24. Hum Brain Mapp. 2006 Jan;27(1):1-13 - PubMed
  25. J Neurosci. 2014 Mar 12;34(11):4064-9 - PubMed
  26. Neuroimage. 2006 Oct 15;33(1):316-25 - PubMed
  27. Cognition. 1985 Oct;21(1):1-36 - PubMed
  28. Brain Res. 2013 Jun 17;1515:55-65 - PubMed
  29. J Neurosci. 2003 Apr 15;23(8):3423-31 - PubMed
  30. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7580-5 - PubMed
  31. Neuroimage. 2012 May 1;60(4):1937-46 - PubMed
  32. Cereb Cortex. 2007 Jun;17(6):1476-85 - PubMed
  33. Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3389-94 - PubMed
  34. Psychol Rev. 1967 Nov;74(6):431-61 - PubMed
  35. Clin Neurophysiol. 2007 Feb;118(2):237-54 - PubMed
  36. Nature. 2014 Mar 6;507(7490):94-8 - PubMed
  37. Behav Brain Res. 2001 Nov 1;125(1-2):279-84 - PubMed
  38. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 - PubMed
  39. Neuroscience. 2013 May 1;237:87-95 - PubMed
  40. Cortex. 2012 Jul;48(7):785-7 - PubMed
  41. J Neurosci. 2012 Oct 3;32(40):14010-21 - PubMed
  42. Science. 2007 Jun 15;316(5831):1609-12 - PubMed
  43. Neuroimage. 2004;23 Suppl 1:S264-74 - PubMed
  44. Neuroimage. 2014 Feb 1;86:461-9 - PubMed
  45. Med Biol Eng Comput. 1994 Jan;32(1):35-42 - PubMed
  46. Nat Neurosci. 2004 Mar;7(3):295-301 - PubMed
  47. Nat Neurosci. 2009 May;12(5):535-40 - PubMed
  48. Neuron. 2011 Jan 27;69(2):387-96 - PubMed
  49. PLoS One. 2007 Sep 19;2(9):e909 - PubMed
  50. J Neurosci. 2012 Jun 20;32(25):8443-53 - PubMed
  51. Neuroimage. 2004 Jul;22(3):1182-94 - PubMed
  52. Nat Rev Neurosci. 2007 May;8(5):393-402 - PubMed
  53. Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):449-54 - PubMed
  54. Neuron. 2000 Apr;26(1):55-67 - PubMed
  55. Trends Cogn Sci. 2012 Apr;16(4):219-30 - PubMed
  56. Neuropsychologia. 2012 Jun;50(7):1380-92 - PubMed
  57. Hear Res. 2007 Jul;229(1-2):132-47 - PubMed
  58. IEEE Trans Biomed Eng. 1989 Feb;36(2):165-71 - PubMed

Publication Types