Display options
Share it on

J Int Soc Sports Nutr. 2014 May 11;11:18. doi: 10.1186/1550-2783-11-18. eCollection 2014.

The effect of almond consumption on elements of endurance exercise performance in trained athletes.

Journal of the International Society of Sports Nutrition

Muqing Yi, Jinde Fu, Lili Zhou, Hong Gao, Chenguang Fan, Jing Shao, Baohua Xu, Qirong Wang, Juntao Li, Guangwei Huang, Karen Lapsley, Jeffrey B Blumberg, C-Y Oliver Chen

Affiliations

  1. Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China.
  2. Chinese Baiyi Cycling Team, Fengtai District, Beijing 100072, China.
  3. Almond Board of California, Modesto, CA 95354, USA.
  4. Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.

PMID: 24860277 PMCID: PMC4031978 DOI: 10.1186/1550-2783-11-18

Abstract

BACKGROUND: Almonds are a healthy tree nut food with high nutrient density. Their consumption has been shown to ameliorate oxidative stress, inflammation, etc. The objective of the study was to examine the effect of almonds on elements of endurance exercise performance in trained athletes.

METHODS: A 10-week crossover, placebo controlled study was conducted. Eight trained male cyclists and two triathletes were randomly assigned to consume 75 g/d whole almonds (ALM) or isocaloric cookies (COK) with equal subject number. They consumed the assigned food for 4 wks and then the alternate food for another 4 wks. They underwent 3 performance tests including 125-min steady status exercise (SS) and 20-min time trial (TT) on an indoor stationary trainer at the start of the study (BL) and at the end of each intervention phase. Venous blood was collected in the morning prior to the performance test for biochemical measurements and finger blood during the test for glucose determination. Carbohydrate and fat oxidation, energy expenditure, and oxygen use were calculated using respiratory gas analysis.

RESULTS: ALM increased cycling distance during TT by 1.7 km as compared BL (21.9 vs. 20.2 km, P = 0.053) and COK increased 0.6 km (20.8 vs. 20.2 km, P > 0.05). ALM, but not COK, led to higher CHO and lower fat oxidation and less oxygen consumption during TT than BL (P < 0.05), whereas there was no significant difference in heart rate among BL, ALM and COK. ALM maintained higher blood glucose level after TT than COK (P < 0.05). ALM had higher vitamin E and haemoglobin and lower serum free fatty acid (P < 0.05), slightly elevated serum arginine and nitric oxide and plasma insulin (P > 0.05) than BL, and a higher total antioxidant capacity than COK (P < 0.05).

CONCLUSIONS: Whole almonds improved cycling distance and the elements related to endurance performance more than isocaloric cookies in trained athletes as some nutrients in almonds may contribute to CHO reservation and utilization and effective oxygen utilization. The results suggest that almonds can be incorporated into diets of those who undertake exercise training for performance improvement.

Keywords: Almonds; Antioxidant defense capacity; Exercise performance; Substrate oxidation

References

  1. Metabolism. 2011 Sep;60(9):1312-7 - PubMed
  2. J Am Coll Nutr. 2010 Jun;29(3):189-97 - PubMed
  3. J Int Soc Sports Nutr. 2012 Jun 26;9(1):30 - PubMed
  4. J Nutr. 2007 Dec;137(12):2717-22 - PubMed
  5. J Nutr. 2005 Jun;135(6):1366-73 - PubMed
  6. Int J Food Sci Nutr. 2004 May;55(3):171-8 - PubMed
  7. J Physiol. 2012 Mar 1;590(5):1069-76 - PubMed
  8. J Strength Cond Res. 2007 Nov;21(4):1214-9 - PubMed
  9. Am J Physiol. 1999 Jan;276(1):E106-17 - PubMed
  10. Br J Nutr. 2010 Mar;103(6):907-12 - PubMed
  11. Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1071-7 - PubMed
  12. Int Immunopharmacol. 2011 Aug;11(8):915-24 - PubMed
  13. J Nutr. 2006 Dec;136(12):2987-92 - PubMed
  14. Physiol Rev. 2008 Oct;88(4):1243-76 - PubMed
  15. Med Sci Sports Exerc. 2009 Mar;41(3):709-31 - PubMed
  16. J Appl Physiol (1985). 2010 Nov;109(5):1394-403 - PubMed
  17. Int J Sport Nutr Exerc Metab. 2006 Aug;16(4):405-19 - PubMed
  18. Annu Rev Pharmacol Toxicol. 2001;41:79-99 - PubMed
  19. Am J Clin Nutr. 2002 Nov;76(5):1000-6 - PubMed
  20. J Physiol Pharmacol. 2003 Dec;54(4):469-87 - PubMed
  21. Am J Clin Nutr. 2010 May;91(5):1261-7 - PubMed
  22. Int J Sports Med. 2001 Nov;22(8):593-7 - PubMed
  23. J Clin Pharmacol. 2001 May;41(5):492-9 - PubMed
  24. Int J Biochem Cell Biol. 2007;39(1):44-84 - PubMed
  25. Clin Sports Med. 1999 Jul;18(3):469-84, v - PubMed
  26. Am J Clin Nutr. 2005 Jan;81(1 Suppl):230S-242S - PubMed
  27. Free Radic Biol Med. 2008 Jan 15;44(2):169-79 - PubMed
  28. Free Radic Biol Med. 2005 Apr 1;38(7):857-66 - PubMed
  29. J Agric Food Chem. 2008 Jun 25;56(12):4427-34 - PubMed
  30. J Am Diet Assoc. 2005 Mar;105(3):449-54 - PubMed
  31. Am J Clin Nutr. 2003 Jun;77(6):1379-84 - PubMed
  32. Altern Med Rev. 2000 Jun;5(3):196-208 - PubMed
  33. Med Sci Sports Exerc. 2010 Feb;42(2):338-45 - PubMed
  34. J Agric Food Chem. 2006 Jul 12;54(14):5027-33 - PubMed
  35. Diabetologia. 2002 Nov;45(11):1475-83 - PubMed
  36. Int J Sport Nutr Exerc Metab. 2010 Feb;20(1):56-62 - PubMed
  37. J Appl Physiol (1985). 2011 Mar;110(3):834-45 - PubMed
  38. Int J Sports Med. 1997 Aug;18(6):454-7 - PubMed
  39. Metabolism. 2011 Apr;60(4):474-9 - PubMed
  40. Cell Signal. 2009 May;21(5):786-92 - PubMed
  41. Sports Med. 2006;36(4):327-58 - PubMed
  42. Circulation. 2002 Sep 10;106(11):1327-32 - PubMed
  43. J Int Soc Sports Nutr. 2010 Mar 23;7:13 - PubMed
  44. J Nutr. 2008 May;138(5):908-13 - PubMed
  45. J Int Soc Sports Nutr. 2004 Dec 31;1(2):35-8 - PubMed

Publication Types