Display options
Share it on

Front Cell Neurosci. 2014 May 13;8:127. doi: 10.3389/fncel.2014.00127. eCollection 2014.

The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons.

Frontiers in cellular neuroscience

Sunggu Yang, Valentina Emiliani, Cha-Min Tang

Affiliations

  1. Department of Neurology, University of Maryland School of Medicine, Baltimore MD, USA.
  2. Wavefront-engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250, Paris Descartes University Paris, France.
  3. Department of Neurology, University of Maryland School of Medicine, Baltimore MD, USA ; Baltimore Veterans Adminstration Medical Center, Baltimore MD, USA.

PMID: 24860429 PMCID: PMC4026731 DOI: 10.3389/fncel.2014.00127

Abstract

The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and temporal precision may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

Keywords: 3D digital holography; multibranch integration

References

  1. J Neurophysiol. 1993 Sep;70(3):1086-101 - PubMed
  2. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14600-4 - PubMed
  3. Science. 2009 Aug 7;325(5941):756-60 - PubMed
  4. Front Neural Circuits. 2008 Dec 19;2:5 - PubMed
  5. Neuron. 2003 Mar 27;37(6):989-99 - PubMed
  6. J Neurophysiol. 2008 May;99(5):2584-601 - PubMed
  7. J Neurosci. 2006 Feb 15;26(7):2088-100 - PubMed
  8. J Neural Eng. 2011 Aug;8(4):046002 - PubMed
  9. Nat Methods. 2008 Sep;5(9):821-7 - PubMed
  10. J Biophotonics. 2012 Oct;5(10):745-53 - PubMed
  11. Nature. 2008 Mar 27;452(7186):436-41 - PubMed
  12. Brain Res Bull. 1999 Nov-Dec;50(5-6):303-4 - PubMed
  13. Curr Opin Neurobiol. 2003 Jun;13(3):372-83 - PubMed
  14. Science. 2001 Sep 21;293(5538):2272-5 - PubMed
  15. Neuron. 2003 Mar 27;37(6):977-87 - PubMed
  16. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19504-9 - PubMed
  17. Neuron. 2006 Apr 20;50(2):291-307 - PubMed
  18. Science. 2012 Jan 20;335(6066):353-6 - PubMed
  19. Nature. 2010 Apr 29;464(7293):1307-12 - PubMed
  20. Neuron. 1998 Nov;21(5):1189-200 - PubMed
  21. Nat Neurosci. 2004 Jun;7(6):621-7 - PubMed
  22. Curr Opin Neurobiol. 2008 Jun;18(3):321-31 - PubMed
  23. Neuron. 2011 Sep 8;71(5):772-81 - PubMed
  24. Nature. 2000 Mar 16;404(6775):285-9 - PubMed
  25. Trends Neurosci. 2008 Jun;31(6):309-16 - PubMed
  26. Neuron. 2009 Jul 30;63(2):171-7 - PubMed
  27. Front Mol Neurosci. 2012 May 31;5:70 - PubMed
  28. J Physiol. 1987 Nov;392:603-16 - PubMed
  29. Neuron. 2011 Mar 10;69(5):885-92 - PubMed
  30. Neuron. 1999 Feb;22(2):383-94 - PubMed

Publication Types