Display options
Share it on

PeerJ. 2014 May 01;2:e367. doi: 10.7717/peerj.367. eCollection 2014.

Modulatory interactions between the default mode network and task positive networks in resting-state.

PeerJ

Xin Di, Bharat B Biswal

Affiliations

  1. Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, NJ , USA.

PMID: 24860698 PMCID: PMC4017816 DOI: 10.7717/peerj.367

Abstract

The two major brain networks, i.e., the default mode network (DMN) and the task positive network, typically reveal negative and variable connectivity in resting-state. In the present study, we examined whether the connectivity between the DMN and different components of the task positive network were modulated by other brain regions by using physiophysiological interaction (PPI) on resting-state functional magnetic resonance imaging data. Spatial independent component analysis was first conducted to identify components that represented networks of interest, including the anterior and posterior DMNs, salience, dorsal attention, left and right executive networks. PPI analysis was conducted between pairs of these networks to identify networks or regions that showed modulatory interactions with the two networks. Both network-wise and voxel-wise analyses revealed reciprocal positive modulatory interactions between the DMN, salience, and executive networks. Together with the anatomical properties of the salience network regions, the results suggest that the salience network may modulate the relationship between the DMN and executive networks. In addition, voxel-wise analysis demonstrated that the basal ganglia and thalamus positively interacted with the salience network and the dorsal attention network, and negatively interacted with the salience network and the DMN. The results demonstrated complex modulatory interactions among the DMNs and task positive networks in resting-state, and suggested that communications between these networks may be modulated by some critical brain structures such as the salience network, basal ganglia, and thalamus.

Keywords: Basal ganglia; Dynamic connectivity; Modulatory interaction; Physiophysiological interaction; Salience network; Thalamus

References

  1. J Cogn Neurosci. 1997 Fall;9(5):648-63 - PubMed
  2. PLoS One. 2013 Aug 30;8(8):e71163 - PubMed
  3. Hum Brain Mapp. 2000 Jul;10(3):120-31 - PubMed
  4. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 - PubMed
  5. Magn Reson Med. 1995 Oct;34(4):537-41 - PubMed
  6. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 - PubMed
  7. Neuroimage. 2014 Feb 1;86:53-9 - PubMed
  8. Neuroimage. 2008 Jan 1;39(1):527-37 - PubMed
  9. Neuroimage. 2009 Oct 1;47(4):1408-16 - PubMed
  10. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 - PubMed
  11. Neuroimage. 2008 Aug 15;42(2):649-62 - PubMed
  12. Schizophr Bull. 2014 Mar;40(2):428-37 - PubMed
  13. Neuroimage. 2009 Feb 1;44(3):893-905 - PubMed
  14. J Neurosci. 2007 Feb 28;27(9):2349-56 - PubMed
  15. Neuropsychologia. 2013 Jan;51(1):156-67 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 - PubMed
  17. Trends Cogn Sci. 2011 Oct;15(10):483-506 - PubMed
  18. Neuroimage. 2010 Oct 15;53(1):303-17 - PubMed
  19. Front Hum Neurosci. 2013 May 20;7:216 - PubMed
  20. Neuroimage. 2005 Jun;26(2):471-9 - PubMed
  21. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 - PubMed
  22. Brain Connect. 2012;2(1):25-32 - PubMed
  23. J Neurophysiol. 2011 Jun;105(6):2753-63 - PubMed
  24. Trends Cogn Sci. 2012 Dec;16(12):584-92 - PubMed
  25. Nat Commun. 2012;3:1051 - PubMed
  26. J Cogn Neurosci. 1997 Fall;9(5):624-47 - PubMed
  27. Neuroimage. 2011 Jun 1;56(3):1222-34 - PubMed
  28. Neuroimage. 2003 Aug;19(4):1273-302 - PubMed
  29. Cereb Cortex. 2005 Sep;15(9):1332-42 - PubMed
  30. J Cogn Neurosci. 2013 Jan;25(1):74-86 - PubMed
  31. Neuroimage. 2010 Mar;50(1):81-98 - PubMed
  32. Biol Cybern. 2010 Jan;102(1):57-69 - PubMed
  33. J Comp Neurol. 2009 Jul 10;515(2):243-59 - PubMed
  34. Neuroimage. 1997 Oct;6(3):218-29 - PubMed
  35. PLoS One. 2011;6(8):e23460 - PubMed
  36. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 - PubMed
  37. Brain Struct Funct. 2010 Jun;214(5-6):495-517 - PubMed
  38. PLoS Biol. 2006 Oct;4(10):e326 - PubMed
  39. Hum Brain Mapp. 2007 Nov;28(11):1194-205 - PubMed
  40. Cereb Cortex. 2008 Dec;18(12):2735-47 - PubMed
  41. Nat Neurosci. 2002 Nov;5(11):1203-9 - PubMed
  42. Neuroimage. 2009 Jan 1;44(1):62-70 - PubMed
  43. J Neurosci. 2013 Apr 10;33(15):6444-53 - PubMed
  44. Neuroimage. 2012 Jan 16;59(2):1420-8 - PubMed
  45. Neuroimage. 2009 Feb 1;44(3):715-23 - PubMed
  46. Neuroimage. 2003 May;19(1):200-7 - PubMed
  47. Brain Struct Funct. 2010 Jun;214(5-6):655-67 - PubMed
  48. J Neurosci. 2010 Jul 21;30(29):9910-8 - PubMed
  49. Nature. 2005 Nov 24;438(7067):496-9 - PubMed
  50. Neuroimage. 2006 Aug 1;32(1):228-37 - PubMed
  51. Nat Neurosci. 2013 Sep;16(9):1348-55 - PubMed
  52. Nat Rev Neurosci. 2012 Apr 13;13(5):336-49 - PubMed
  53. Ann Neurol. 2004 Apr;55(4):522-9 - PubMed
  54. J Neurosci. 2010 Mar 3;30(9):3210-9 - PubMed
  55. Hum Brain Mapp. 2001 Nov;14(3):140-51 - PubMed
  56. Neuropsychologia. 2008 Jan 31;46(2):540-53 - PubMed
  57. J Neurophysiol. 2009 Jun;101(6):3270-83 - PubMed
  58. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 - PubMed
  59. Front Syst Neurosci. 2010 Apr 06;4:8 - PubMed
  60. Brain Struct Funct. 2015 Jan;220(1):37-46 - PubMed
  61. Nature. 2008 Nov 20;456(7220):391-4 - PubMed
  62. J Neurophysiol. 2011 Sep;106(3):1125-65 - PubMed
  63. J Neurosci. 2000 Dec 1;20(23):8897-901 - PubMed
  64. J Neurosci. 2013 Apr 10;33(15):6333-42 - PubMed
  65. Neuroimage. 2011 Jan 15;54(2):1043-52 - PubMed
  66. AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 - PubMed
  67. J Cogn Neurosci. 2014 Mar;26(3):501-13 - PubMed

Publication Types

Grant support