Display options
Share it on

Front Neurol. 2014 Jun 04;5:82. doi: 10.3389/fneur.2014.00082. eCollection 2014.

Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury.

Frontiers in neurology

Sonia Villapol, Kimberly R Byrnes, Aviva J Symes

Affiliations

  1. Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Pharmacology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA.
  2. Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA.

PMID: 24926283 PMCID: PMC4044679 DOI: 10.3389/fneur.2014.00082

Abstract

Traumatic brain injury (TBI) results in a loss of brain tissue at the moment of impact in the cerebral cortex. Subsequent secondary injury involves the release of molecular signals with dramatic consequences for the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The mechanisms behind the progression of tissue loss remain under investigation. In this study, we analyzed the spatial-temporal profile of blood flow, apoptotic, and astrocytic-vascular events in the cortical regions around the impact site at time points ranging from 5 h to 2 months after TBI. We performed a mild-moderate controlled cortical impact injury in young adult mice and analyzed the glial and vascular response to injury. We observed a dramatic decrease in perilesional cerebral blood flow (CBF) immediately following the cortical impact that lasted until days later. CBF finally returned to baseline levels by 30 days post-injury (dpi). The initial impact also resulted in an immediate loss of tissue and cavity formation that gradually increased in size until 3 dpi. An increase in dying cells localized in the pericontusional region and a robust astrogliosis were also observed at 3 dpi. A strong vasculature interaction with astrocytes was established at 7 dpi. Glial scar formation began at 7 dpi and seemed to be compact by 60 dpi. Altogether, these results suggest that TBI results in a progression from acute neurodegeneration that precedes astrocytic activation, reformation of the neurovascular unit to glial scar formation. Understanding the multiple processes occurring after TBI is critical to the ability to develop neuroprotective therapeutics to ameliorate the short and long-term consequences of brain injury.

Keywords: astrogliosis; cell death; cerebral blood flow; glial scar; vasculature

References

  1. Transl Stroke Res. 2014 Jun;5(3):394-406 - PubMed
  2. J Neurosci. 2003 Oct 8;23(27):9254-62 - PubMed
  3. Neurosci Res. 2011 Oct;71(2):107-13 - PubMed
  4. Mol Cell Endocrinol. 2014 May 25;389(1-2):58-64 - PubMed
  5. Eur J Neurosci. 1999 Feb;11(2):632-46 - PubMed
  6. J Neurotrauma. 2003 Aug;20(8):745-54 - PubMed
  7. Minerva Anestesiol. 2003 Apr;69(4):227-31 - PubMed
  8. Restor Neurol Neurosci. 1999;15(1):1-15 - PubMed
  9. PLoS One. 2013 Sep 10;8(9):e74039 - PubMed
  10. Neuropsychopharmacology. 2011 May;36(6):1171-7 - PubMed
  11. J Neurotrauma. 1997 Oct;14(10):729-38 - PubMed
  12. J Neurotrauma. 2008 Jul;25(7):739-53 - PubMed
  13. Brain Res Bull. 1999 Aug;49(6):377-91 - PubMed
  14. J Neurotrauma. 2011 May;28(5):775-85 - PubMed
  15. Exp Neurol. 2003 Jul;182(1):87-102 - PubMed
  16. J Neurotrauma. 2012 Aug 10;29(12):2181-91 - PubMed
  17. J Neurotrauma. 1997 Oct;14(10):715-27 - PubMed
  18. Eur J Neurosci. 2006 Dec;24(11):3063-72 - PubMed
  19. BMC Syst Biol. 2013 Oct 10;7:103 - PubMed
  20. Acta Neurochir (Wien). 1991;113(1-2):91-5 - PubMed
  21. Chin J Traumatol. 2008 Apr;11(2):84-8 - PubMed
  22. Neuroscientist. 2008 Aug;14(4):339-44 - PubMed
  23. Physiol Rev. 2006 Jul;86(3):1009-31 - PubMed
  24. Brain Res Brain Res Rev. 1999 Apr;29(2-3):137-68 - PubMed
  25. J Neurotrauma. 2011 Mar;28(3):359-69 - PubMed
  26. Curr Top Dev Biol. 2007;79:75-97 - PubMed
  27. J Neurosurg. 1986 May;64(5):787-94 - PubMed
  28. J Neurotrauma. 2010 Nov;27(11):1971-82 - PubMed
  29. J Neurotrauma. 1997 Oct;14(10):677-98 - PubMed
  30. Pediatr Res. 2011 Jan;69(1):51-5 - PubMed
  31. J Neurosurg. 1980 Oct;53(4):500-11 - PubMed
  32. Neurochem Int. 2006 Apr;48(5):394-403 - PubMed
  33. J Neurotrauma. 2001 Apr;18(4):377-88 - PubMed
  34. Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H2897-904 - PubMed
  35. J Neurotrauma. 1995 Oct;12(5):791-814 - PubMed
  36. J Neurosci. 2003 Apr 15;23(8):3394-406 - PubMed
  37. Nat Neurosci. 2007 Nov;10(11):1369-76 - PubMed
  38. Medicina (Kaunas). 2002;38(3):243-9; quiz 354 - PubMed
  39. Int J Radiat Oncol Biol Phys. 2005 May 1;62(1):279-87 - PubMed
  40. Toxicology. 2013 Aug 9;310:39-52 - PubMed
  41. J Biol Chem. 1999 Aug 20;274(34):23996-4006 - PubMed
  42. ASN Neuro. 2014 May 08;6(3):159-70 - PubMed
  43. Neurochem Int. 2010 Mar;56(4):577-84 - PubMed
  44. Glia. 2002 Apr 1;38(1):45-64 - PubMed
  45. Curr Pharm Des. 2006;12(27):3521-33 - PubMed
  46. Int Rev Neurobiol. 2007;82:95-111 - PubMed
  47. Exp Toxicol Pathol. 2004 Oct;56(1-2):75-81 - PubMed
  48. Am J Pathol. 2009 Nov;175(5):2111-20 - PubMed
  49. Neuroreport. 1998 Jun 1;9(8):1691-6 - PubMed
  50. CNS Neurol Disord Drug Targets. 2013 Sep;12(6):870-81 - PubMed

Publication Types