Display options
Share it on

Genes (Basel). 2014 May 05;5(2):347-65. doi: 10.3390/genes5020347.

Epigenetic variation in monozygotic twins: a genome-wide analysis of DNA methylation in buccal cells.

Genes

Jenny van Dongen, Erik A Ehli, Roderick C Slieker, Meike Bartels, Zachary M Weber, Gareth E Davies, P Eline Slagboom, Bastiaan T Heijmans, Dorret I Boomsma

Affiliations

  1. Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands. [email protected].
  2. Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108, USA. [email protected].
  3. Department of Molecular Epidemiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands. [email protected].
  4. Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands. [email protected].
  5. Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108, USA. [email protected].
  6. Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108, USA. [email protected].
  7. Department of Molecular Epidemiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands. [email protected].
  8. Department of Molecular Epidemiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands. [email protected].
  9. Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands. [email protected].

PMID: 24802513 PMCID: PMC4094937 DOI: 10.3390/genes5020347

Abstract

DNA methylation is one of the most extensively studied epigenetic marks in humans. Yet, it is largely unknown what causes variation in DNA methylation between individuals. The comparison of DNA methylation profiles of monozygotic (MZ) twins offers a unique experimental design to examine the extent to which such variation is related to individual-specific environmental influences and stochastic events or to familial factors (DNA sequence and shared environment). We measured genome-wide DNA methylation in buccal samples from ten MZ pairs (age 8-19) using the Illumina 450k array and examined twin correlations for methylation level at 420,921 CpGs after QC. After selecting CpGs showing the most variation in the methylation level between subjects, the mean genome-wide correlation (rho) was 0.54. The correlation was higher, on average, for CpGs within CpG islands (CGIs), compared to CGI shores, shelves and non-CGI regions, particularly at hypomethylated CpGs. This finding suggests that individual-specific environmental and stochastic influences account for more variation in DNA methylation in CpG-poor regions. Our findings also indicate that it is worthwhile to examine heritable and shared environmental influences on buccal DNA methylation in larger studies that also include dizygotic twins.

References

  1. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17046-9 - PubMed
  2. Genome Res. 2011 Nov;21(11):1813-21 - PubMed
  3. Twin Res Hum Genet. 2013 Feb;16(1):252-67 - PubMed
  4. Epigenetics Chromatin. 2013 Aug 06;6(1):26 - PubMed
  5. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 - PubMed
  6. Aging Cell. 2012 Aug;11(4):694-703 - PubMed
  7. J Pediatr. 2009 Jan;154(1):29-32 - PubMed
  8. Epigenetics. 2012 Oct;7(10):1173-87 - PubMed
  9. Genomics. 2011 Oct;98(4):288-95 - PubMed
  10. BMC Bioinformatics. 2010 Nov 30;11:587 - PubMed
  11. Genome Res. 2002 Jun;12(6):996-1006 - PubMed
  12. Stem Cells. 2012 Sep;30(9):1938-47 - PubMed
  13. Genome Res. 2012 Aug;22(8):1395-406 - PubMed
  14. Epigenetics. 2010 Aug 16;5(6):516-26 - PubMed
  15. Genes Dev. 2002 Jan 1;16(1):6-21 - PubMed
  16. Twin Res Hum Genet. 2010 Jun;13(3):231-45 - PubMed
  17. Nat Rev Genet. 2012 Sep;13(9):640-53 - PubMed
  18. Bioinformatics. 2013 Jan 15;29(2):189-96 - PubMed
  19. Hum Mol Genet. 2010 Nov 1;19(21):4176-88 - PubMed
  20. Nature. 2013 Aug 22;500(7463):477-81 - PubMed
  21. Nat Rev Genet. 2013 Aug;14(8):585-94 - PubMed
  22. Hum Mol Genet. 2011 Dec 15;20(24):4786-96 - PubMed
  23. PLoS Genet. 2012;8(3):e1002543 - PubMed
  24. Am J Hum Genet. 2013 Nov 7;93(5):876-90 - PubMed
  25. Hum Mol Genet. 2007 Mar 1;16(5):547-54 - PubMed
  26. Bone Marrow Transplant. 2000 Mar;25(5):575-7 - PubMed
  27. PLoS One. 2009 Aug 26;4(8):e6767 - PubMed
  28. PLoS Genet. 2012;8(4):e1002629 - PubMed
  29. Genome Biol. 2011;12(1):R10 - PubMed
  30. FASEB J. 2010 Sep;24(9):3135-44 - PubMed
  31. Genesis. 2006 Sep;44(9):401-6 - PubMed
  32. Genome Biol. 2012 Oct 03;13(10):R97 - PubMed
  33. Genome Biol. 2013 May 22;14(5):R42 - PubMed
  34. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  35. Cell. 2007 Feb 23;128(4):635-8 - PubMed
  36. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-9 - PubMed
  37. Nat Genet. 2009 Feb;41(2):240-5 - PubMed
  38. Nat Rev Genet. 2012 May 29;13(7):484-92 - PubMed
  39. Twin Res Hum Genet. 2013 Dec;16(6):1026-32 - PubMed
  40. Epigenetics Chromatin. 2011 Jul 13;4(1):10 - PubMed
  41. Eur J Hum Genet. 2014 Feb;22(2):221-7 - PubMed
  42. Epigenetics. 2013 Feb;8(2):203-9 - PubMed
  43. Am J Hum Genet. 1995 Nov;57(5):1252-4 - PubMed
  44. PLoS One. 2011;6(6):e14821 - PubMed
  45. Nature. 2010 Jul 8;466(7303):253-7 - PubMed
  46. PLoS One. 2011;6(10):e25590 - PubMed

Publication Types

Grant support