Display options
Share it on

World J Clin Oncol. 2013 Nov 10;4(4):91-101. doi: 10.5306/wjco.v4.i4.91.

Monitoring adenoviral based gene delivery in rat glioma by molecular imaging.

World journal of clinical oncology

Nadimpalli Ravi S Varma, Kenneth N Barton, Branislava Janic, Adarsh Shankar, Asm Iskander, Meser M Ali, Ali S Arbab

Affiliations

  1. Nadimpalli Ravi S Varma, Branislava Janic, Adarsh Shankar, ASM Iskander, Meser M Ali, Ali S Arbab, Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI 48202, United States.

PMID: 24926429 PMCID: PMC4053711 DOI: 10.5306/wjco.v4.i4.91

Abstract

AIM: To determine whether endothelial progenitor cells (EPCs) can be used as delivery vehicle for adenoviral vectors and imaging probes for gene therapy in glioblastoma.

METHODS: To use cord blood derived EPCs as delivery vehicle for adenoviral vectors and imaging probes for glioma gene therapy, a rat model of human glioma was made by implanting U251 cells orthotopically. EPCs were transfected with an adenovirus (AD5/carrying hNIS gene) and labeled with iron oxide and inoculated them directly into the tumor 14 d following implantation of U251 cells. Magnetic resonance imaging (MRI) was used to in vivo track the migration of EPCs in the tumor. The expression of gene products was determined by in vivo Tc-99m single photon emission computed tomography (SPECT). The findings were validated with immunohistochemistry (IHC).

RESULTS: EPCs were successfully transfected with the adenoviral vectors carrying hNIS which was proved by significantly (P < 0.05) higher uptake of Tc-99m in transfected cells. Viability of EPCs following transfection and iron labeling was not altered. In vivo imaging showed the presence of iron positive cells and the expression of transgene (hNIS) product on MRI and SPECT, respectively, all over the tumors following administration of transfected and iron labeled EPCs in the tumors. IHC confirmed the distribution of EPC around the tumor away from the injection site and also showed transgene expression in the tumor. The results indicated the EPCs' ability to deliver adenoviral vectors into the glioma upon intratumor injection.

CONCLUSION: EPCs can be used as vehicle to deliver adenoviral vector to glioma and also act as imaging probe at the same time.

Keywords: Adenovirus; Cord blood endothelial progenitor cells; Human sodium iodide symporter; Magnetic resonance imaging; Single photon emission computed tomography

References

  1. Cancer Gene Ther. 2002 Nov;9(11):925-34 - PubMed
  2. Gene Ther. 2004 May;11(10):811-8 - PubMed
  3. Toxicol Appl Pharmacol. 2013 May 1;268(3):318-30 - PubMed
  4. BMC Biotechnol. 2009 Mar 27;9:28 - PubMed
  5. PLoS One. 2010 Feb 26;5(2):e9365 - PubMed
  6. Nat Med. 1997 Dec;3(12):1354-61 - PubMed
  7. Clin Cancer Res. 2005 Nov 1;11(21):7886-90 - PubMed
  8. Cancer Res. 2008 Dec 1;68(23):9614-23 - PubMed
  9. Clin Cancer Res. 2000 Nov;6(11):4442-8 - PubMed
  10. Hum Gene Ther. 2003 Dec 10;14(18):1777-85 - PubMed
  11. Virology. 1973 Apr;52(2):456-67 - PubMed
  12. Mol Ther. 2006 Feb;13(2):347-56 - PubMed
  13. Adv Virol. 2012;2012:805629 - PubMed
  14. J Virol. 2007 May;81(9):4866-71 - PubMed
  15. FASEB J. 2008 Sep;22(9):3234-46 - PubMed
  16. Curr Gene Ther. 2012 Feb 1;12(1):33-47 - PubMed
  17. Biochem Biophys Res Commun. 1996 Sep 13;226(2):339-45 - PubMed
  18. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12846-51 - PubMed
  19. Mol Ther. 2003 Sep;8(3):508-18 - PubMed
  20. Oncology. 2005;69(6):503-8 - PubMed
  21. J Clin Neurosci. 2012 Jun;19(6):875-80 - PubMed
  22. PLoS One. 2012;7(5):e37577 - PubMed
  23. Chin J Cancer. 2012 May;31(5):233-40 - PubMed
  24. Graefes Arch Clin Exp Ophthalmol. 2005 Mar;243(3):187-8 - PubMed
  25. Acta Neuropathol. 2007 Aug;114(2):97-109 - PubMed
  26. Expert Rev Med Devices. 2006 Jul;3(4):427-39 - PubMed
  27. J Clin Oncol. 2003 Jul 1;21(13):2508-18 - PubMed
  28. J Vis Exp. 2011 Nov 04;(57):e3482 - PubMed
  29. Cancer Gene Ther. 2002 Jan;9(1):9-15 - PubMed
  30. Mol Ther. 2011 Sep;19(9):1714-26 - PubMed
  31. Cancer Res. 2002 Sep 1;62(17):4968-76 - PubMed
  32. Blood. 2005 Jan 1;105(1):420-5 - PubMed
  33. Biol Pharm Bull. 2004 Sep;27(9):1441-3 - PubMed
  34. Nucl Med Biol. 2006 May;33(4):575-80 - PubMed
  35. Mol Ther. 2004 Apr;9(4):625-31 - PubMed
  36. Curr Gene Ther. 2009 Oct;9(5):389-95 - PubMed
  37. Cancer Cell. 2004 May;5(5):406-8 - PubMed
  38. Cancer Gene Ther. 2005 Jul;12(7):600-7 - PubMed
  39. Cancer Gene Ther. 2000 Jun;7(6):947-53 - PubMed
  40. Methods Mol Biol. 2012;797:97-109 - PubMed
  41. J Nucl Med. 2001 Feb;42(2):317-25 - PubMed
  42. Blood. 2004 Oct 15;104(8):2272-80 - PubMed
  43. Cancer Gene Ther. 2012 Jun;19(6):431-42 - PubMed
  44. Thyroid. 2002 Jan;12(1):19-26 - PubMed
  45. Neurol Res Int. 2012;2012:428565 - PubMed
  46. Stem Cells. 2005 Mar;23(3):324-34 - PubMed
  47. Radiology. 2007 Jan;242(1):198-207 - PubMed
  48. Clin Cancer Res. 2001 Nov;7(11):3625-8 - PubMed
  49. PLoS One. 2009 Jun 11;4(6):e5873 - PubMed
  50. Mol Ther. 2011 Jul;19(7):1353-9 - PubMed
  51. Brain Pathol. 1995 Oct;5(4):345-81 - PubMed
  52. Anticancer Res. 2012 Nov;32(11):4971-82 - PubMed
  53. PLoS One. 2012;7(3):e32871 - PubMed
  54. Nature. 1996 Feb 1;379(6564):458-60 - PubMed
  55. PLoS One. 2012;7(1):e30310 - PubMed
  56. Clin J Oncol Nurs. 2004 Aug;8(4):368-76 - PubMed
  57. Cell Adh Migr. 2008 Jul-Sep;2(3):186-91 - PubMed
  58. Gene Ther. 2002 Jan;9(1):2-11 - PubMed
  59. Mol Cancer Ther. 2006 Mar;5(3):755-66 - PubMed
  60. Nucl Med Biol. 2004 Jan;31(1):31-40 - PubMed

Publication Types

Grant support