Display options
Share it on

Metabolites. 2012 Oct 16;2(4):756-74. doi: 10.3390/metabo2040756.

Characterization of the Interaction Between the Small Regulatory Peptide SgrT and the EIICBGlc of the Glucose-Phosphotransferase System of E. coli K-12.

Metabolites

Anne Kosfeld, Knut Jahreis

Affiliations

  1. Centre for Pathology and Forensic and Genetic Medicine, Institute for Human Genetics-Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
  2. Department of Biology and Chemistry, University of Osnabrück, Barbarastr.11, D-49069 Osnabrück, Germany. [email protected].

PMID: 24957761 PMCID: PMC3901232 DOI: 10.3390/metabo2040756

Abstract

Escherichia coli is a widely used microorganism in biotechnological processes. An obvious goal for current scientific and technical research in this field is the search for new tools to optimize productivity. Usually glucose is the preferred carbon source in biotechnological applications. In E. coli, glucose is taken up by the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTS). The regulation of the ptsG gene for the glucose transporter is very complex and involves several regulatory proteins. Recently, a novel posttranscriptional regulation system has been identified which consists of a small regulatory RNA SgrS and a small regulatory polypeptide called SgrT. During the accumulation of glucose-6-phosphate or fructose-6-phosphate, SgrS is involved in downregulation of ptsG mRNA stability, whereas SgrT inhibits glucose transport activity by a yet unknown mechanism. The function of SgrS has been studied intensively. In contrast, the knowledge about the function of SgrT is still limited. Therefore, in this paper, we focused our interest on the regulation of glucose transport activity by SgrT. We identified the SgrT target sequence within the glucose transporter and characterized the interaction in great detail. Finally, we suggest a novel experimental approach to regulate artificially carbohydrate uptake in E. coli to minimize metabolic overflow in biotechnological applications.

References

  1. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20149-50 - PubMed
  2. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5485-9 - PubMed
  3. J Biol Chem. 2003 May 2;278(18):15608-14 - PubMed
  4. Biochim Biophys Acta. 1994 Nov 1;1188(1-2):1-28 - PubMed
  5. EMBO J. 2001 Feb 1;20(3):491-8 - PubMed
  6. J Bacteriol. 1996 Feb;178(3):940-2 - PubMed
  7. Trends Biotechnol. 1996 Mar;14(3):98-105 - PubMed
  8. FEBS Lett. 2001 Aug 31;504(3):104-11 - PubMed
  9. J Bacteriol. 1992 May;174(9):2843-50 - PubMed
  10. EMBO J. 2000 Oct 16;19(20):5353-61 - PubMed
  11. J Biol Chem. 1994 Sep 23;269(38):23437-43 - PubMed
  12. J Bacteriol. 2000 Aug;182(16):4437-42 - PubMed
  13. J Bacteriol. 1978 Jun;134(3):1141-56 - PubMed
  14. Proteomics. 2007 Nov;7(22):4032-5 - PubMed
  15. J Am Chem Soc. 2005 Jan 12;127(1):146-57 - PubMed
  16. Science. 1988 Jan 29;239(4839):487-91 - PubMed
  17. Gene. 1985;33(1):103-19 - PubMed
  18. Nat Methods. 2004 Dec;1(3):255-62 - PubMed
  19. J Biol Chem. 1999 May 14;274(20):14006-11 - PubMed
  20. N Biotechnol. 2013 Jan 25;30(2):269-73 - PubMed
  21. Res Microbiol. 2004 Apr;155(3):211-5 - PubMed
  22. Arch Microbiol. 2008 Jul;190(1):41-9 - PubMed
  23. J Bacteriol. 2006 Aug;188(15):5439-49 - PubMed
  24. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  25. Biotechnol Prog. 1992 Nov-Dec;8(6):469-78 - PubMed
  26. EMBO J. 2000 Oct 16;19(20):5344-52 - PubMed
  27. J Biol Chem. 2003 Apr 25;278(17):14776-81 - PubMed
  28. Virology. 1955 Jul;1(2):190-206 - PubMed
  29. Methods Enzymol. 1990;185:60-89 - PubMed
  30. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1808-12 - PubMed
  31. Biochemistry. 1992 Jun 23;31(24):5514-21 - PubMed
  32. J Bacteriol. 2007 Mar;189(6):2238-48 - PubMed
  33. J Biol Chem. 2001 Jul 13;276(28):25871-5 - PubMed
  34. Eur J Cell Biol. 2011 Sep;90(9):711-20 - PubMed
  35. Mol Microbiol. 2004 Nov;54(4):1076-89 - PubMed
  36. FEMS Microbiol Rev. 2008 Nov;32(6):891-907 - PubMed
  37. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9 - PubMed
  38. J Ind Microbiol Biotechnol. 2007 Nov;34(11):689-700 - PubMed
  39. Contrib Microbiol. 2009;16:65-87 - PubMed
  40. Biotechnol Lett. 2010 Dec;32(12):1897-903 - PubMed
  41. J Biol Chem. 1992 Feb 25;267(6):3847-51 - PubMed
  42. J Mol Microbiol Biotechnol. 2007;13(1-3):105-16 - PubMed
  43. Biotechnol Prog. 1999 Jan-Feb;15(1):81-90 - PubMed
  44. Mol Microbiol. 1988 Jan;2(1):1-8 - PubMed
  45. J Biol Chem. 2004 Sep 10;279(37):38513-8 - PubMed
  46. J Bacteriol. 2000 Aug;182(16):4443-52 - PubMed
  47. Metab Eng. 2006 May;8(3):281-90 - PubMed
  48. J Bacteriol. 1995 Jul;177(14):4121-30 - PubMed
  49. J Bacteriol. 1967 Feb;93(2):642-8 - PubMed

Publication Types