Display options
Share it on

Metabolites. 2012 Nov 12;2(4):844-71. doi: 10.3390/metabo2040844.

Analysis and Design of Stimulus Response Curves of E. coli.

Metabolites

Andreas Kremling, Anna Goehler, Knut Jahreis, Markus Nees, Benedikt Auerbach, Wolfgang Schmidt-Heck, Oznur Kökpinar, Robert Geffers, Ursula Rinas, Katja Bettenbrock

Affiliations

  1. Systems Biotechnology, Technische Universität München, Boltzmannstr. 15, Garching b. München, Germany. [email protected].
  2. University Osnabrück, Barbarastrasse 11, Osnabrück, Germany. [email protected].
  3. University Osnabrück, Barbarastrasse 11, Osnabrück, Germany. [email protected].
  4. Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany. [email protected].
  5. Systems Biotechnology, Technische Universität München, Boltzmannstr. 15, Garching b. München, Germany. [email protected].
  6. Hans Knoell Institute, Beutenbergstrasse 11a, Jena, Germany. [email protected].
  7. Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, Germany. [email protected].
  8. Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, Germany. [email protected].
  9. Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, Germany. [email protected].
  10. Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany. [email protected].

PMID: 24957765 PMCID: PMC3901224 DOI: 10.3390/metabo2040844

Abstract

Metabolism and signalling are tightly coupled in bacteria. Combining several theoretical approaches, a core model is presented that describes transcriptional and allosteric control of glycolysis in Escherichia coli. Experimental data based on microarrays, signalling components and extracellular metabolites are used to estimate kinetic parameters. A newly designed strain was used that adjusts the incoming glucose flux into the system and allows a kinetic analysis. Based on the results, prediction for intracelluar metabolite concentrations over a broad range of the growth rate could be performed and compared with data from literature.

References

  1. J Biol Chem. 2000 Nov 10;275(45):34909-21 - PubMed
  2. Adv Exp Med Biol. 2012;736:579-95 - PubMed
  3. Bioinformatics. 2008 Mar 1;24(5):704-10 - PubMed
  4. Mol Syst Biol. 2008;4:160 - PubMed
  5. BMC Syst Biol. 2007 Sep 13;1:42 - PubMed
  6. PLoS Comput Biol. 2010 Jun 10;6(6):e1000812 - PubMed
  7. Mol Microbiol. 2002 Jul;45(2):289-306 - PubMed
  8. Res Microbiol. 1996 Jul-Sep;147(6-7):489-93 - PubMed
  9. Microbiology (Reading). 2005 Mar;151(Pt 3):707-716 - PubMed
  10. J Biol Chem. 2006 Feb 3;281(5):2578-84 - PubMed
  11. Eur J Cell Biol. 2011 Sep;90(9):711-20 - PubMed
  12. Mol Syst Biol. 2010;6:355 - PubMed
  13. Biosystems. 2006 May;84(2):124-52 - PubMed
  14. Mol Syst Biol. 2010 May 11;6:364 - PubMed
  15. J Theor Biol. 2012 Jun 21;303:62-74 - PubMed
  16. Nat Chem Biol. 2009 Aug;5(8):593-9 - PubMed
  17. J Biol Chem. 1974 Jan 10;249(1):265-74 - PubMed
  18. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19302-7 - PubMed
  19. Nucleic Acids Res. 2009 Jan;37(Database issue):D464-70 - PubMed
  20. Biotechnol Bioeng. 2002 Jul 5;79(1):53-73 - PubMed
  21. BMC Syst Biol. 2010 Dec 01;4:166 - PubMed
  22. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7 - PubMed
  23. J Bacteriol. 1996 Jan;178(1):280-3 - PubMed
  24. J Bacteriol. 2007 Oct;189(19):6891-900 - PubMed
  25. J Biol Chem. 2002 Apr 12;277(15):13175-83 - PubMed
  26. Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031 - PubMed
  27. Mol Microbiol. 1995 Jun;16(6):1157-69 - PubMed
  28. FEBS J. 2009 Jan;276(2):594-602 - PubMed
  29. J Bacteriol. 2000 Aug;182(16):4443-52 - PubMed

Publication Types