Display options
Share it on

Metabolites. 2013 May 07;3(2):325-46. doi: 10.3390/metabo3020325.

The central carbon and energy metabolism of marine diatoms.

Metabolites

Toshihiro Obata, Alisdair R Fernie, Adriano Nunes-Nesi

Affiliations

  1. Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm 14476, Germany. [email protected].
  2. Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm 14476, Germany. [email protected].
  3. Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-000, Minas Gerais , Brazil. [email protected].

PMID: 24957995 PMCID: PMC3901268 DOI: 10.3390/metabo3020325

Abstract

Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved.

References

  1. Science. 2004 Oct 1;306(5693):79-86 - PubMed
  2. Science. 2006 Mar 24;311(5768):1768-70 - PubMed
  3. PLoS One. 2011;6(11):e26985 - PubMed
  4. Nature. 2006 May 18;441(7091):341-4 - PubMed
  5. Mar Biotechnol (NY). 2013 Feb;15(1):48-55 - PubMed
  6. Nature. 2011 May 12;473(7346):203-7 - PubMed
  7. Ann Rev Mar Sci. 2010;2:333-65 - PubMed
  8. Plant J. 2011 Apr;66(1):45-57 - PubMed
  9. Anal Bioanal Chem. 2010 Jun;397(3):917-23 - PubMed
  10. Eukaryot Cell. 2005 Feb;4(2):242-52 - PubMed
  11. Plant Physiol Biochem. 2005 Jul;43(7):717-26 - PubMed
  12. Photosynth Res. 2007 Jul-Sep;93(1-3):79-88 - PubMed
  13. Plant J. 2008 May;54(4):621-39 - PubMed
  14. Curr Opin Biotechnol. 2012 Jun;23(3):352-63 - PubMed
  15. Eukaryot Cell. 2009 Dec;8(12):1856-68 - PubMed
  16. Science. 2010 Aug 13;329(5993):796-9 - PubMed
  17. Physiol Plant. 2008 May;133(1):106-16 - PubMed
  18. PLoS One. 2012;7(3):e33768 - PubMed
  19. Plant J. 2012 Jun;70(6):1004-14 - PubMed
  20. Appl Microbiol Biotechnol. 2004 Nov;65(6):635-48 - PubMed
  21. Plant Cell Physiol. 2008 Jan;49(1):103-16 - PubMed
  22. Genome Biol. 2010;11(8):R85 - PubMed
  23. Plant Physiol. 2007 Sep;145(1):230-5 - PubMed
  24. Nature. 2000 Oct 12;407(6805):695-702 - PubMed
  25. Nature. 2009 Mar 5;458(7234):69-72 - PubMed
  26. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1767-72 - PubMed
  27. FEBS Lett. 2013 Mar 1;587(5):481-7 - PubMed
  28. Curr Opin Biotechnol. 2010 Jun;21(3):277-86 - PubMed
  29. J Photochem Photobiol B. 2006 Mar 1;82(3):161-72 - PubMed
  30. Phytochemistry. 2012 Aug;80:17-27 - PubMed
  31. PLoS One. 2011;6(10):e26695 - PubMed
  32. Photosynth Res. 2010 Nov;106(1-2):123-34 - PubMed
  33. Arch Biochem Biophys. 1988 Dec;267(2):521-8 - PubMed
  34. Science. 2007 Oct 12;318(5848):245-50 - PubMed
  35. FEBS J. 2011 Oct;278(19):3651-66 - PubMed
  36. Annu Rev Genet. 2008;42:83-107 - PubMed
  37. Nature. 2012 Dec 6;492(7427):59-65 - PubMed
  38. PLoS One. 2008 Jan 09;3(1):e1426 - PubMed
  39. Plant Physiol. 2008 Jan;146(1):300-9 - PubMed
  40. Trends Plant Sci. 2012 Jul;17(7):395-403 - PubMed
  41. Plant Physiol Biochem. 2012 May;54:70-7 - PubMed
  42. J Biosci Bioeng. 2006 Feb;101(2):87-96 - PubMed
  43. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10438-43 - PubMed
  44. Plant Physiol. 2002 Jul;129(3):1398-406 - PubMed
  45. Physiol Plant. 2008 May;133(1):92-105 - PubMed
  46. Science. 2009 Nov 27;326(5957):1253-6 - PubMed
  47. Plant Physiol. 2010 Dec;154(4):1737-52 - PubMed
  48. New Phytol. 2013 Jan;197(1):177-185 - PubMed
  49. Science. 2008 May 23;320(5879):1034-9 - PubMed
  50. Phytochemistry. 2000 Jun;54(5):461-71 - PubMed
  51. Science. 1998 Jul 10;281(5374):237-40 - PubMed
  52. Science. 2012 Feb 17;335(6070):843-7 - PubMed
  53. Biochim Biophys Acta. 2007 Jun;1767(6):414-21 - PubMed
  54. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1579-84 - PubMed
  55. Plant Physiol. 2001 Aug;126(4):1459-70 - PubMed
  56. Aquat Microb Ecol. 2009 Jun 3;55(3):241-253 - PubMed
  57. Plant Cell. 2008 Oct;20(10):2848-59 - PubMed
  58. Nature. 2009 May 14;459(7244):180-4 - PubMed
  59. Mar Environ Res. 2012 Aug;79:142-51 - PubMed
  60. Plant Physiol. 2013 Feb;161(2):1034-48 - PubMed
  61. Curr Opin Biotechnol. 2013 Apr;24(2):300-9 - PubMed
  62. Plant Physiol. 2011 Aug;156(4):2184-95 - PubMed
  63. Eukaryot Cell. 2010 Jan;9(1):97-106 - PubMed
  64. Mar Biotechnol (NY). 1999 May;1(3):239-251 - PubMed
  65. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3830-7 - PubMed
  66. Nat Rev Genet. 2008 Aug;9(8):605-18 - PubMed
  67. Plant J. 2013 Mar;73(6):897-909 - PubMed
  68. Photosynth Res. 2010 Nov;106(1-2):103-22 - PubMed
  69. Nature. 2008 Nov 13;456(7219):239-44 - PubMed
  70. PLoS One. 2012;7(6):e38162 - PubMed
  71. Nature. 2012 Sep 20;489(7416):419-22 - PubMed
  72. Nature. 2004 Oct 7;431(7009):689-92 - PubMed
  73. Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52 - PubMed
  74. BMC Genomics. 2011 Jun 30;12:337 - PubMed
  75. Biochimie. 2011 Jan;93(1):91-100 - PubMed
  76. Nature. 2000 Oct 26;407(6807):996-9 - PubMed
  77. Science. 2004 Apr 16;304(5669):408-14 - PubMed
  78. Photosynth Res. 2010 Nov;106(1-2):89-102 - PubMed
  79. Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18214-9 - PubMed
  80. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2011 Oct;29(4):324-57 - PubMed
  81. Photosynth Res. 2011 Sep;109(1-3):115-22 - PubMed
  82. Plant Physiol. 2012 Jan;158(1):299-312 - PubMed
  83. Environ Pollut. 2012 Mar;162:110-9 - PubMed
  84. Protist. 2006 Jun;157(2):91-124 - PubMed
  85. ISME J. 2011 Jun;5(6):1057-60 - PubMed
  86. Ann Rev Mar Sci. 2011;3:291-315 - PubMed
  87. Biotechnol Adv. 2007 May-Jun;25(3):294-306 - PubMed
  88. Photosynth Res. 2011 Sep;109(1-3):191-203 - PubMed
  89. Mol Gen Genet. 1996 Oct 16;252(5):572-9 - PubMed
  90. Science. 2007 Feb 2;315(5812):612-7 - PubMed
  91. Nature. 2010 Sep 30;467(7315):550-4 - PubMed

Publication Types