Display options
Share it on

Anal Chem. 2014 Jun 17;86(12):6012-8. doi: 10.1021/ac501149a. Epub 2014 May 31.

A new microfluidics-based droplet dispenser for ICPMS.

Analytical chemistry

Pascal E Verboket, Olga Borovinskaya, Nicole Meyer, Detlef Günther, Petra S Dittrich

Affiliations

  1. Laboratory of Organic Chemistry, and ‡Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich Switzerland.

PMID: 24805360 PMCID: PMC4063494 DOI: 10.1021/ac501149a

Abstract

In this work, a novel droplet microfluidic sample introduction system for inductively coupled plasma mass spectrometry (ICPMS) is proposed and characterized. The cheap and disposable microfluidic chip generates droplets of an aqueous sample in a stream of perfluorohexane (PFH), which is also used to eject them as a liquid jet. The aqueous droplets remain intact during the ejection and can be transported into the ICP with >50% efficiency. The transport is realized via a custom-built system, which includes a membrane desolvator necessary for the PFH vapor removal. The introduction system presented here can generate highly monodisperse droplets in the size range of 40-60 μm at frequencies from 90 to 300 Hz. These droplets produced very stable signals with a relative standard deviation (RSD) comparable to the one achieved with a commercial droplet dispenser. Using the current system, samples with a total volume of <1 μL can be analyzed. Moreover, the capabilities of the setup for introduction and quantitative elemental analysis of single cells were described using a test system of bovine red blood cells. In the future, other modules of the modern microfludics can be integrated in the chip, such as on-chip sample pretreatment or parallel introduction of different samples.

References

  1. J Am Soc Mass Spectrom. 2003 Mar;14(3):227-35 - PubMed
  2. Anal Chem. 1998 Mar 1;70(5):1012-20 - PubMed
  3. Anal Chem. 2010 Dec 1;82(23):9941-7 - PubMed
  4. Anal Chem. 2013 Jun 18;85(12):5875-83 - PubMed
  5. Lab Chip. 2008 Nov;8(11):1837-41 - PubMed
  6. Anal Chem. 2006 Oct 1;78(19):6948-54 - PubMed
  7. Anal Bioanal Chem. 2011 Jan;399(1):347-52 - PubMed
  8. Lab Chip. 2014 Apr 21;14(8):1395-400 - PubMed
  9. Science. 2011 May 6;332(6030):687-96 - PubMed
  10. Anal Chem. 2009 Aug 1;81(15):6558-61 - PubMed
  11. Anal Chem. 2013 Feb 5;85(3):1285-9 - PubMed
  12. Anal Bioanal Chem. 2013 Jul;405(17):5663-70 - PubMed
  13. Lab Chip. 2010 Oct 21;10(20):2702-9 - PubMed
  14. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19243-8 - PubMed
  15. J Am Chem Soc. 2003 Nov 26;125(47):14613-9 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19163-6 - PubMed
  17. Lab Chip. 2013 May 21;13(10):1892-901 - PubMed
  18. Angew Chem Int Ed Engl. 2009;48(15):2719-22 - PubMed
  19. Anal Chem. 1996 Apr 1;68(7):1101-9 - PubMed
  20. Lab Chip. 2009 Jul 7;9(13):1850-8 - PubMed
  21. Anal Chem. 2009 Aug 15;81(16):6813-22 - PubMed
  22. Anal Chem. 2006 Feb 1;78(3):965-71 - PubMed
  23. Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7336-56 - PubMed
  24. Chembiochem. 2005 May;6(5):811-4 - PubMed
  25. Angew Chem Int Ed Engl. 2009;48(37):6832-5 - PubMed
  26. Chem Biol. 2010 May 28;17(5):528-36 - PubMed
  27. Angew Chem Int Ed Engl. 2003 Feb 17;42(7):768-72 - PubMed
  28. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9 - PubMed
  29. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14195-200 - PubMed
  30. Phys Rev Lett. 2008 Jan 18;100(2):024501 - PubMed
  31. Anal Chem. 2014 Mar 4;86(5):2270-8 - PubMed

Publication Types