Display options
Share it on

J Cancer. 2014 May 15;5(6):465-71. doi: 10.7150/jca.9235. eCollection 2014.

Activation of angiogenesis differs strongly between pulmonary carcinoids and neuroendocrine carinomas and is crucial for carcinoid tumourgenesis.

Journal of Cancer

Fabian D Mairinger, Robert F H Walter, Robert Werner, Daniel C Christoph, Saskia Ting, Claudia Vollbrecht, Konstantinos Zarogoulidis, Haidong Huang, Qiang Li, Kurt W Schmid, Jeremias Wohlschlaeger, Paul Zarogoulidis

Affiliations

  1. 1. Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
  2. 1. Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; ; 2. Ruhrlandklinik, West German Lung Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
  3. 3. Department of medical Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
  4. 4. Institute of Pathology, University Hospital Cologne, Cologne, Germany.
  5. 5. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
  6. 6. Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China, China.

PMID: 24959299 PMCID: PMC4066358 DOI: 10.7150/jca.9235

Abstract

BACKGROUND: Lung cancer still remains the leading cause of cancer for men after prostate cancer and breast cancer for women. Angiogenesis is considered a major microenvironment modifier.

MATERIAL AND METHODS: Demographic data and study design; The study is based on a collective of twenty representative specimens of each tumour entity (Typical Carcinoid, Atypical Carcinoid, Large-Cell Neuroendocrine Carcinoma , Small Cell Lung Cancer) for mRNA expression analysis. The following methods were performed: RNA Extraction and RNA Integrity Assessment, NanoString CodeSet Design and Expression Quantification, NanoString Data Processing and Statistical Analysis.

RESULTS: KDR rendered significant association to aggressiveness of the tumour and decreases with increasing malignancy (p=0.049). A decreased expression of HIF1A and KDR mRNA as associated with a higher risk of tumour invasion in vessels (HIF1A: p=0.034; KDR: p=0.029). FIGF and HIF1A expression levels are significantly associated with progression-free survival (FIGF: p= 0.021; HIF1A: p= 0.049). CRHR2 and FLT4 are stronger expressed in female than in male patients (CRHR2: p=0.024, FLT4: p=0.004). FIGF expression is still significant between LCNEC and SCLC (p=0.023). FLT4 and KDR show highly significant association to one of the analysed groups (FLT4: p=0.001; KDR: p=0.006). Additionally, HIF1A expression differs significantly between these focus cohorts (p=0.018).

CONCLUSION: We should consider for clinical practice application which factors affect most the tumour growth and distal metastasis, thereafter investigate easy to administer drugs with low side effects. Probably a cluster system of therapy should be established where a drug targets simultaneously different pathways of the same origin.

Keywords: CRHR2.; FIGF; FLT4; HIF1A; KDR; carcinoid; lung cancer

References

  1. Hum Pathol. 2000 Oct;31(10):1255-65 - PubMed
  2. Cancer Res Treat. 2013 Dec;45(4):325-33 - PubMed
  3. Med Oncol. 2014 Apr;31(4):877 - PubMed
  4. Mol Clin Oncol. 2013 Mar;1(2):331-336 - PubMed
  5. J Carcinog. 2010 Aug 03;9: - PubMed
  6. Eur J Cardiothorac Surg. 2007 Feb;31(2):192-7 - PubMed
  7. Lancet Oncol. 2014 Feb;15(2):143-55 - PubMed
  8. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6650-5 - PubMed
  9. Chest Surg Clin N Am. 2003 Feb;13(1):111-28 - PubMed
  10. Curr Gene Ther. 2014;14(2):75-85 - PubMed
  11. Arch Pathol Lab Med. 2010 Nov;134(11):1628-38 - PubMed
  12. Hum Pathol. 1998 Mar;29(3):272-9 - PubMed
  13. Dan Med Bull. 2000 Nov;47(5):328-39 - PubMed
  14. Biochim Biophys Acta. 2012 Dec;1826(2):255-71 - PubMed
  15. Mol Cancer Ther. 2013 Jun;12(6):992-1001 - PubMed
  16. J Clin Oncol. 2006 Jan 1;24(1):70-6 - PubMed
  17. Ann Thorac Surg. 2004 May;77(5):1781-5 - PubMed
  18. Eur J Cancer. 2009 Sep;45 Suppl 1:251-66 - PubMed
  19. J Cancer Res Ther. 2013 Oct-Dec;9(4):701-5 - PubMed
  20. Semin Respir Crit Care Med. 2014 Feb;35(1):112-28 - PubMed
  21. Chest. 2001 Jun;119(6):1647-51 - PubMed
  22. Eur Respir Rev. 2014 Mar 1;23(131):79-91 - PubMed
  23. Curr Cancer Drug Targets. 2014;14(2):167-80 - PubMed
  24. Eur J Cardiothorac Surg. 2007 Feb;31(2):186-91 - PubMed
  25. J Clin Oncol. 2012 Jun 10;30(17):2070-8 - PubMed
  26. Oncologist. 2010;15(5):436-46 - PubMed
  27. Curr Cancer Drug Targets. 2014;14(1):59-69 - PubMed
  28. Histopathology. 2010 Feb;56(3):356-63 - PubMed
  29. Cell Death Differ. 2008 Mar;15(3):504-14 - PubMed
  30. Lancet. 2011 May 28;377(9780):1846-54 - PubMed
  31. J Thorac Cardiovasc Surg. 2002 Aug;124(2):285-92 - PubMed
  32. J Exp Clin Cancer Res. 2013 Nov 25;32:97 - PubMed
  33. Ther Deliv. 2013 Oct;4(10):1221-3 - PubMed
  34. Chest. 2004 May;125(5 Suppl):158S-62S - PubMed
  35. Clin Cancer Res. 2010 Jun 1;16(11):3028-34 - PubMed
  36. Drug Des Devel Ther. 2013 Jul 18;7:571-83 - PubMed
  37. Gene Ther. 2014 Feb;21(2):158-67 - PubMed
  38. Chest. 2001 Apr;119(4):1143-50 - PubMed
  39. Histochem J. 1991 Nov-Dec;23(11-12):541-7 - PubMed
  40. Am J Surg Pathol. 1998 Aug;22(8):934-44 - PubMed
  41. N Engl J Med. 1971 Nov 18;285(21):1182-6 - PubMed
  42. Cancer. 2005 Mar 15;103(6):1154-64 - PubMed
  43. Biomaterials. 2014 Mar;35(9):2905-14 - PubMed
  44. J Clin Oncol. 2011 Mar 10;29(8):1059-66 - PubMed
  45. Carcinogenesis. 2014 Jul;35(7):1556-63 - PubMed
  46. FASEB J. 2014 Mar;28(3):1412-21 - PubMed
  47. Immunome Res. 2013 Aug 12;9(62):16535 - PubMed

Publication Types