Display options
Share it on

Plant Cell. 2014 May;26(5):1857-1877. doi: 10.1105/tpc.114.124677. Epub 2014 May 07.

Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in Arabidopsis.

The Plant cell

Céline Masclaux-Daubresse, Gilles Clément, Pauline Anne, Jean-Marc Routaboul, Anne Guiboileau, Fabienne Soulay, Ken Shirasu, Kohki Yoshimoto

Affiliations

  1. Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France [email protected].
  2. Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France.
  3. RIKEN, Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan.
  4. Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France RIKEN, Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan.

PMID: 24808053 PMCID: PMC4079355 DOI: 10.1105/tpc.114.124677

Abstract

Autophagy is a fundamental process in the plant life story, playing a key role in immunity, senescence, nutrient recycling, and adaptation to the environment. Transcriptomics and metabolomics of the rosette leaves of Arabidopsis thaliana autophagy mutants (atg) show that autophagy is essential for cell homeostasis and stress responses and that several metabolic pathways are affected. Depletion of hexoses, quercetins, and anthocyanins parallel the overaccumulation of several amino acids and related compounds, such as glutamate, methionine, glutathione, pipecolate, and 2-aminoadipate. Transcriptomic data show that the pathways for glutathione, methionine, raffinose, galacturonate, and anthocyanin are perturbed. Anthocyanin depletion in atg mutants, which was previously reported as a possible defect in flavonoid trafficking to the vacuole, appears due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in flavonoid biosynthesis. Overexpression of the PRODUCTION OF ANTHOCYANIN PIGMENT1 transcription factor restores anthocyanin accumulation in vacuoles of atg mutants. Transcriptome analyses reveal connections between autophagy and (1) salicylic acid biosynthesis and response, (2) cytokinin perception, (3) oxidative stress and plant defense, and possible interactions between autophagy and the COP9 signalosome machinery. The metabolic and transcriptomic signatures identified for the autophagy mutants are discussed and show consistencies with the observed phenotypes.

© 2014 American Society of Plant Biologists. All rights reserved.

References

  1. Plant Cell Physiol. 2006 Dec;47(12):1641-52 - PubMed
  2. Plant Physiol. 2002 Jul;129(3):1181-93 - PubMed
  3. Plant Physiol. 2012 Apr;158(4):1789-802 - PubMed
  4. Plant J. 2005 Apr;42(2):218-35 - PubMed
  5. Autophagy. 2011 Oct;7(10):1145-58 - PubMed
  6. J Biol Chem. 2008 Jan 11;283(2):774-83 - PubMed
  7. J Biol Chem. 2004 Apr 23;279(17):16947-53 - PubMed
  8. Plant J. 2006 Jun;46(5):768-79 - PubMed
  9. Phytochemistry. 2009 May;70(8):1017-29 - PubMed
  10. Plant Physiol. 2008 Sep;148(1):436-54 - PubMed
  11. Genetics. 2008 Mar;178(3):1339-53 - PubMed
  12. Anal Biochem. 1998 Nov 1;264(1):98-110 - PubMed
  13. Plant J. 2004 Aug;39(3):366-80 - PubMed
  14. Trends Plant Sci. 2011 Sep;16(9):489-98 - PubMed
  15. J Exp Bot. 2008;59(14):4029-43 - PubMed
  16. Plant Sci. 2012 Apr;185-186:50-64 - PubMed
  17. Methods Mol Biol. 2006;323:439-47 - PubMed
  18. Autophagy. 2009 Oct;5(7):954-63 - PubMed
  19. Annu Rev Phytopathol. 2011;49:557-76 - PubMed
  20. Plant J. 2011 Jun;66(6):953-68 - PubMed
  21. Semin Cell Dev Biol. 2009 Dec;20(9):1041-7 - PubMed
  22. Plant J. 2005 May;42(4):535-46 - PubMed
  23. Plant Cell. 2011 Mar;23(3):873-94 - PubMed
  24. J Biol Chem. 2011 Apr 1;286(13):11382-90 - PubMed
  25. Annu Rev Plant Biol. 2012;63:215-37 - PubMed
  26. Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:23-36 - PubMed
  27. Plant Sci. 2012 Nov;196:67-76 - PubMed
  28. Plant Cell. 2000 Dec;12(12):2383-2394 - PubMed
  29. Plant Physiol. 2008 Jul;147(3):1251-63 - PubMed
  30. Planta. 2006 Jun;224(1):96-107 - PubMed
  31. Plant Signal Behav. 2008 Aug;3(8):562-3 - PubMed
  32. Plant Physiol. 2011 Jul;156(3):1612-9 - PubMed
  33. J Exp Bot. 2012 Jun;63(10):3749-64 - PubMed
  34. Plant Cell Environ. 2008 May;31(5):587-601 - PubMed
  35. Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:85-98 - PubMed
  36. New Phytol. 2013 Aug;199(3):683-94 - PubMed
  37. Plant Physiol. 2013 Jul;162(3):1290-310 - PubMed
  38. Plant Cell. 2012 Dec;24(12):5123-41 - PubMed
  39. Plant Cell Physiol. 2008 Jul;49(7):1056-65 - PubMed
  40. New Phytol. 2012 May;194(3):732-740 - PubMed
  41. Plant Physiol. 2007 Dec;145(4):1323-35 - PubMed
  42. Plant Cell Environ. 2013 Jun;36(6):1147-59 - PubMed
  43. Int J Mol Sci. 2013 Jan 14;14(1):1608-28 - PubMed
  44. Eur J Cell Biol. 2010 Feb-Mar;89(2-3):157-62 - PubMed
  45. Mol Plant. 2010 Jan;3(1):78-90 - PubMed
  46. Plant Cell. 2009 Sep;21(9):2914-27 - PubMed
  47. Plant J. 2011 Jun;66(5):818-30 - PubMed
  48. Plant J. 2010 Jul;63(2):254-68 - PubMed
  49. Cell. 2009 May 15;137(4):773-83 - PubMed
  50. Plant Physiol. 2006 Feb;140(2):444-56 - PubMed
  51. Plant J. 2013 Jul;75(1):26-39 - PubMed
  52. Circulation. 2011 Nov 8;124(19):2117-28 - PubMed
  53. Cell. 2005 May 20;121(4):567-577 - PubMed
  54. Plant Cell. 2012 May;24(5):2225-36 - PubMed
  55. J Integr Plant Biol. 2012 Nov;54(11):907-20 - PubMed
  56. Cell. 2009 May 29;137(5):860-72 - PubMed
  57. FEBS Lett. 2004 Aug 27;573(1-3):83-92 - PubMed
  58. Arch Biochem Biophys. 2012 Sep 15;525(2):181-94 - PubMed
  59. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed

Publication Types