Display options
Share it on

Nanotechnol Sci Appl. 2014 Apr 10;7:1-29. doi: 10.2147/NSA.S40324. eCollection 2014.

New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.

Nanotechnology, science and applications

Qing Peng, Albert K Dearden, Jared Crean, Liang Han, Sheng Liu, Xiaodong Wen, Suvranu De

Affiliations

  1. Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
  2. Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA.
  3. Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
  4. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China ; Synfuels China Co, Ltd, Huairou, Beijing, People's Republic of China.

PMID: 24808721 PMCID: PMC3998860 DOI: 10.2147/NSA.S40324

Abstract

Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications.

Keywords: graphene-like structures; graphyne; hydrogenation of graphene; nanotechnology applications; properties and synthesis; two-dimensional materials

References

  1. Nat Mater. 2010 Apr;9(4):315-9 - PubMed
  2. Nano Lett. 2009 Apr;9(4):1540-3 - PubMed
  3. Small. 2012 May 21;8(10):1607-13 - PubMed
  4. Nature. 2010 Sep 16;467(7313):305-8 - PubMed
  5. J Phys Condens Matter. 2012 Apr 25;24(16):165301 - PubMed
  6. Nanotechnology. 2012 Apr 27;23(16):165303 - PubMed
  7. Science. 2010 Feb 5;327(5966):662 - PubMed
  8. Nano Lett. 2009 Dec;9(12):4343-7 - PubMed
  9. Phys Chem Chem Phys. 2013 Nov 28;15(44):19427-37 - PubMed
  10. Adv Mater. 2011 May 10;23(18):2098-103 - PubMed
  11. Chem Commun (Camb). 2010 May 21;46(19):3256-8 - PubMed
  12. Science. 2008 Jul 18;321(5887):385-8 - PubMed
  13. Phys Chem Chem Phys. 2012 Mar 14;14(10):3651-8 - PubMed
  14. Science. 2004 Oct 22;306(5696):666-9 - PubMed
  15. Nature. 2012 Oct 11;490(7419):192-200 - PubMed
  16. Phys Rev Lett. 2012 Feb 24;108(8):086804 - PubMed
  17. Nanotechnology. 2009 Apr 1;20(13):135602 - PubMed
  18. J Phys Condens Matter. 2010 Nov 24;22(46):465502 - PubMed
  19. Phys Rev Lett. 2009 Jan 30;102(4):046808 - PubMed
  20. Nat Mater. 2010 Nov;9(11):868-71 - PubMed
  21. Nanoscale. 2012 Nov 21;4(22):7006-11 - PubMed
  22. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3 - PubMed
  23. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 - PubMed
  24. Phys Chem Chem Phys. 2013 Jun 7;15(21):8179-85 - PubMed
  25. Nano Lett. 2010 Sep 8;10(9):3360-6 - PubMed
  26. Phys Chem Chem Phys. 2013 Feb 14;15(6):2003-11 - PubMed
  27. Nat Nanotechnol. 2007 Mar;2(3):156-61 - PubMed
  28. Phys Rev Lett. 2006 Nov 3;97(18):186102 - PubMed
  29. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  30. Nature. 2009 Mar 26;458(7237):390-1 - PubMed
  31. Acc Chem Res. 2014 Feb 18;47(2):593-602 - PubMed
  32. Science. 2009 Jan 30;323(5914):610-3 - PubMed
  33. Angew Chem Int Ed Engl. 2007;46(47):9081-5 - PubMed
  34. Nat Mater. 2007 Mar;6(3):183-91 - PubMed
  35. J Phys Chem A. 2012 Apr 19;116(15):3934-9 - PubMed
  36. Nanoscale. 2013 Jan 21;5(2):695-703 - PubMed
  37. Phys Rev Lett. 2013 Jun 14;110(24):246602 - PubMed
  38. Nano Lett. 2009 Nov;9(11):3867-70 - PubMed
  39. Nature. 2005 Nov 10;438(7065):197-200 - PubMed
  40. Phys Chem Chem Phys. 2012 Oct 14;14(38):13385-91 - PubMed
  41. Nanotechnology. 2013 Dec 20;24(50):505720 - PubMed
  42. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  43. Chem Rev. 2013 May 8;113(5):3766-98 - PubMed
  44. Nano Lett. 2011 Dec 14;11(12):5274-8 - PubMed
  45. Nanoscale. 2012 Aug 7;4(15):4587-93 - PubMed
  46. Science. 2004 Feb 27;303(5662):1348-51 - PubMed
  47. Nano Lett. 2009 Jan;9(1):422-6 - PubMed
  48. Adv Mater. 2010 Feb 16;22(7):803-12 - PubMed
  49. Nature. 2009 Feb 5;457(7230):706-10 - PubMed
  50. Phys Rev Lett. 2008 Aug 22;101(8):087204 - PubMed

Publication Types