Display options
Share it on

Breed Sci. 2014 May;64(1):48-59. doi: 10.1270/jsbbs.64.48.

Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables.

Breeding science

Masahiko Ishida, Masakazu Hara, Nobuko Fukino, Tomohiro Kakizaki, Yasujiro Morimitsu

Affiliations

  1. NARO Institute of Vegetable and Tea Science, Tsukuba Vegetable Research Station , 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666 , Japan.
  2. Research Institute of Green Science and Technology, Shizuoka University , 836 Ohya, Shizuoka 422-8529 , Japan.
  3. NARO Institute of Vegetable and Tea Science , 360 Kusawa, Ano, Tsu, Mie 514-2392 , Japan.
  4. The Department of Food and Nutritional Sciences, The Graduate School of Humanities and Sciences, Ochanomizu University , 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610 , Japan.

PMID: 24987290 PMCID: PMC4031110 DOI: 10.1270/jsbbs.64.48

Abstract

Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates.

Keywords: Brassica; biosynthesis; gene; glucosinolate; health; isothiocyanate; plant breeding

References

  1. Phytochemistry. 2006 Jun;67(11):1053-67 - PubMed
  2. Trends Plant Sci. 2006 Feb;11(2):89-100 - PubMed
  3. J Agric Food Chem. 2006 Dec 13;54(25):9370-6 - PubMed
  4. Plant Physiol. 2001 Jun;126(2):849-60 - PubMed
  5. Genetics. 2002 Dec;162(4):1937-43 - PubMed
  6. Plant Physiol. 2000 Jul;123(3):949-58 - PubMed
  7. Genome. 2003 Oct;46(5):753-60 - PubMed
  8. Crit Rev Food Sci Nutr. 1983;18(2):123-201 - PubMed
  9. New Phytol. 2012 Jan;193(1):96-108 - PubMed
  10. Annu Rev Entomol. 2009;54:57-83 - PubMed
  11. Theor Appl Genet. 2008 May;116(8):1035-49 - PubMed
  12. Plant Sci. 2001 Feb 5;160(3):425-431 - PubMed
  13. Theor Appl Genet. 2003 Jun;107(1):168-80 - PubMed
  14. Theor Appl Genet. 2007 Dec;116(1):77-85 - PubMed
  15. Theor Appl Genet. 1995 Feb;90(2):194-204 - PubMed
  16. Plant Physiol. 2000 Oct;124(2):599-608 - PubMed
  17. Theor Appl Genet. 2003 Apr;106(6):1116-21 - PubMed
  18. Cancer Epidemiol Biomarkers Prev. 2007 Apr;16(4):847-51 - PubMed
  19. FEBS Lett. 2000 Feb 25;468(2-3):243-6 - PubMed
  20. Plant Cell Physiol. 2000 Oct;41(10):1102-9 - PubMed
  21. Plant Mol Biol. 2000 Jan;42(1):93-113 - PubMed
  22. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11908-13 - PubMed
  23. Theor Appl Genet. 1996 Oct;93(5-6):1006-10 - PubMed
  24. Cancer Res. 2000 Mar 1;60(5):1426-33 - PubMed
  25. J Agric Food Chem. 2002 Jan 16;50(2):378-83 - PubMed
  26. Food Chem Toxicol. 1995 Jun;33(6):537-43 - PubMed
  27. FEBS J. 2009 Jul;276(13):3559-74 - PubMed
  28. Nahrung. 2004 Feb;48(1):25-33 - PubMed
  29. Am J Clin Nutr. 2000 Dec;72(6):1424-35 - PubMed
  30. PLoS One. 2013;8(1):e53541 - PubMed
  31. New Phytol. 2008;179(4):1017-1032 - PubMed
  32. Trends Plant Sci. 2010 May;15(5):283-90 - PubMed
  33. Biofactors. 2000;13(1-4):271-6 - PubMed
  34. J Agric Food Chem. 2013 Feb 27;61(8):1943-53 - PubMed
  35. Am J Clin Nutr. 2005 Dec;82(6):1283-91 - PubMed
  36. Breed Sci. 2012 Mar;62(1):63-70 - PubMed
  37. Theor Appl Genet. 2003 Feb;106(4):727-34 - PubMed
  38. Plant Physiol. 2001 Apr;125(4):1688-99 - PubMed
  39. Nat Genet. 2011 Aug 28;43(10):1035-9 - PubMed
  40. J Agric Food Chem. 2006 Nov 29;54(24):9227-33 - PubMed
  41. Theor Appl Genet. 2005 Sep;111(5):949-55 - PubMed
  42. J Chem Ecol. 2003 Jun;29(6):1403-15 - PubMed
  43. Cancer Treat Rev. 2010 Aug;36(5):377-83 - PubMed
  44. Biochim Biophys Acta. 1998 Mar 2;1379(3):325-36 - PubMed
  45. Mol Nutr Food Res. 2009 Sep;53 Suppl 2:S219 - PubMed
  46. J Agric Food Chem. 2002 Oct 9;50(21):6239-44 - PubMed
  47. J Exp Bot. 2013 Feb;64(4):1097-109 - PubMed
  48. Theor Appl Genet. 2006 Aug;113(3):549-61 - PubMed
  49. Cancer Res. 2008 Mar 1;68(5):1593-600 - PubMed
  50. Planta. 1998 Oct;206(3):370-7 - PubMed
  51. New Phytol. 2013 Jun;198(4):1085-1095 - PubMed
  52. Phytochemistry. 2007 Feb;68(4):536-45 - PubMed
  53. Anal Biochem. 2002 Jul 1;306(1):83-91 - PubMed
  54. Theor Appl Genet. 2007 Jul;115(2):277-87 - PubMed
  55. Phytochemistry. 2001 Jan;56(1):5-51 - PubMed
  56. Theor Appl Genet. 2004 Aug;109(4):792-9 - PubMed
  57. Plant Physiol. 2010 May;153(1):348-63 - PubMed
  58. Phytochem Anal. 2001 Jul-Aug;12(4):226-42 - PubMed
  59. Biochem Biophys Res Commun. 2013 May 24;435(1):1-7 - PubMed
  60. Annu Rev Plant Biol. 2006;57:303-33 - PubMed
  61. Genes Cells. 2007 Oct;12(10):1163-78 - PubMed
  62. Nutr Cancer. 2004;48(2):198-206 - PubMed
  63. J Biol Chem. 2002 Feb 1;277(5):3456-63 - PubMed
  64. Theor Appl Genet. 1995 Oct;91(5):802-8 - PubMed
  65. J Chromatogr. 1988 Jan 15;435(3):501-7 - PubMed
  66. Food Chem Toxicol. 1987 Aug;25(8):581-7 - PubMed
  67. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2399-403 - PubMed
  68. Plant Physiol. 2002 Apr;128(4):1180-8 - PubMed

Publication Types