Display options
Share it on

Front Syst Neurosci. 2014 Jun 17;8:113. doi: 10.3389/fnsys.2014.00113. eCollection 2014.

The cerebellum for jocks and nerds alike.

Frontiers in systems neuroscience

Laurentiu S Popa, Angela L Hewitt, Timothy J Ebner

Affiliations

  1. Department of Neuroscience, University of Minnesota Minneapolis, MN, USA.

PMID: 24987338 PMCID: PMC4060457 DOI: 10.3389/fnsys.2014.00113

Abstract

Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains.

Keywords: Purkinje cells; cognition; internal models; performance errors; sensory prediction errors

References

  1. Psychol Res. 2009 Jul;73(4):527-44 - PubMed
  2. J Neurosci. 2012 Oct 31;32(44):15345-58 - PubMed
  3. Eur J Neurosci. 2011 Jun;33(11):2114-28 - PubMed
  4. Exp Brain Res. 2005 Dec;167(4):660-5 - PubMed
  5. J Neurophysiol. 1990 May;63(5):1241-61 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16223-8 - PubMed
  7. Brain Lang. 2012 Jan;120(1):42-51 - PubMed
  8. J Neurosci. 1999 Mar 1;19(5):1782-803 - PubMed
  9. Front Neural Circuits. 2013 Aug 21;7:133 - PubMed
  10. Brain. 1999 Jan;122 ( Pt 1):87-97 - PubMed
  11. Trends Cogn Sci. 1998 Sep 1;2(9):338-47 - PubMed
  12. Cerebellum. 2012 Jun;11(2):505-25 - PubMed
  13. Nature. 2000 Jan 13;403(6766):192-5 - PubMed
  14. J Neurophysiol. 2011 Nov;106(5):2232-47 - PubMed
  15. Annu Rev Neurosci. 2010;33:269-98 - PubMed
  16. Neuropsychologia. 2000;38(5):558-65 - PubMed
  17. Curr Biol. 2012 Sep 25;22(18):R794-5 - PubMed
  18. Nature. 1997 May 15;387(6630):278-81 - PubMed
  19. Neuropsychol Rev. 2010 Sep;20(3):271-9 - PubMed
  20. Front Psychol. 2013 Jan 22;3:612 - PubMed
  21. Neural Netw. 1998 Oct;11(7-8):1317-29 - PubMed
  22. Neuron. 2000 Sep;27(3):611-22 - PubMed
  23. Neuroimage. 2005 Jan 15;24(2):332-8 - PubMed
  24. Front Syst Neurosci. 2013 Mar 13;7:3 - PubMed
  25. Trends Cogn Sci. 1998 Sep 1;2(9):355-62 - PubMed
  26. Nat Neurosci. 2013 Oct;16(10):1484-91 - PubMed
  27. Curr Opin Neurobiol. 1999 Dec;9(6):718-27 - PubMed
  28. J Neuropsychiatry Clin Neurosci. 2004 Summer;16(3):367-78 - PubMed
  29. Psychol Rev. 1956 Mar;63(2):81-97 - PubMed
  30. Annu Rev Neurosci. 2008;31:1-24 - PubMed
  31. J Neurosci. 2006 Apr 5;26(14):3642-5 - PubMed
  32. Neuroimage. 2007 Jul 1;36(3):943-54 - PubMed
  33. J Neurosci. 2011 Feb 9;31(6):2305-12 - PubMed
  34. Neural Netw. 1996 Nov;9(8):1265-1279 - PubMed
  35. Cortex. 2010 Jul-Aug;46(7):845-57 - PubMed
  36. Brain. 1997 Oct;120 ( Pt 10):1753-62 - PubMed
  37. J Integr Neurosci. 2011 Sep;10(3):317-52 - PubMed
  38. J Comp Neurol. 1989 Nov 1;289(1):53-73 - PubMed
  39. J Neurosci. 2005 Oct 5;25(40):9244-57 - PubMed
  40. Curr Biol. 2005 Dec 20;15(24):2179-89 - PubMed
  41. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5461-6 - PubMed
  42. J Neurosci. 2006 Dec 13;26(50):12861-72 - PubMed
  43. Cerebellum. 2012 Jun;11(2):352-65 - PubMed
  44. J Neurophysiol. 1995 Dec;74(6):2573-89 - PubMed
  45. Brain Res Cogn Brain Res. 2001 Oct;12(2):301-5 - PubMed
  46. J Neurophysiol. 1994 Oct;72(4):1674-85 - PubMed
  47. J Neurophysiol. 1970 Jul;33(4):537-47 - PubMed
  48. Exp Brain Res. 2001 Sep;140(1):66-76 - PubMed
  49. Exp Brain Res. 2008 Mar;185(3):359-81 - PubMed
  50. Neuroscience. 2009 Sep 1;162(3):836-51 - PubMed
  51. Nat Neurosci. 2001 Jun;4(6):638-44 - PubMed
  52. J Neurosci. 2003 Sep 10;23(23):8432-44 - PubMed
  53. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9281-6 - PubMed
  54. Nature. 1997 Nov 20;390(6657):279-81 - PubMed
  55. J Neurosci. 2006 Sep 6;26(36):9107-16 - PubMed
  56. Nat Neurosci. 2006 Nov;9(11):1404-11 - PubMed
  57. J Neurosci. 2009 Oct 14;29(41):12930-9 - PubMed
  58. Cerebellum. 2011 Dec;10(4):683-93 - PubMed
  59. J Physiol. 1982 Mar;324:113-34 - PubMed
  60. J Neurosci. 2001 Jan 15;21(2):700-12 - PubMed
  61. J Physiol. 1977 Oct;271(2):515-36 - PubMed
  62. Science. 1994 Aug 12;265(5174):949-51 - PubMed
  63. Neuropsychologia. 2000;38(7):1054-72 - PubMed
  64. Neuropsychol Rev. 2010 Sep;20(3):236-60 - PubMed
  65. J Neurosci. 2008 Feb 27;28(9):2252-60 - PubMed
  66. J Neurophysiol. 1998 Aug;80(2):832-48 - PubMed
  67. Cerebellum. 2007;6(3):280-6 - PubMed
  68. Curr Biol. 2013 Jun 3;23(11):947-55 - PubMed
  69. Curr Opin Neurobiol. 2006 Dec;16(6):645-9 - PubMed
  70. Cerebellum. 2007;6(3):163-7 - PubMed
  71. Nature. 1998 Apr 2;392(6675):494-7 - PubMed
  72. Neuron. 2010 May 27;66(4):573-84 - PubMed
  73. PLoS One. 2011 Apr 25;6(4):e14803 - PubMed
  74. Nat Neurosci. 1998 Nov;1(7):631-4 - PubMed
  75. Neuron. 2013 Oct 30;80(3):807-15 - PubMed
  76. J Neurophysiol. 1996 Jul;76(1):492-509 - PubMed
  77. Neuroimage. 2009 Jan 15;44(2):489-501 - PubMed
  78. J Neurophysiol. 1987 Mar;57(3):787-802 - PubMed
  79. PLoS One. 2012;7(4):e36184 - PubMed
  80. J Neurophysiol. 1997 Jul;78(1):478-91 - PubMed
  81. Brain Res. 2000 Dec 15;886(1-2):237-245 - PubMed
  82. Neuron. 2004 Jun 24;42(6):973-82 - PubMed
  83. Nat Rev Neurosci. 2006 Jul;7(7):511-22 - PubMed
  84. Cortex. 2007 Apr;43(3):338-49 - PubMed
  85. Ann N Y Acad Sci. 2002 Dec;978:273-88 - PubMed
  86. Curr Opin Neurobiol. 2011 Aug;21(4):602-8 - PubMed
  87. J Physiol. 1969 Jun;202(2):437-70 - PubMed
  88. J Neurophysiol. 2008 Oct;100(4):1949-66 - PubMed
  89. Brain Cogn. 1997 Jul;34(2):218-45 - PubMed
  90. Brain Stimul. 2012 Apr;5(2):84-94 - PubMed
  91. Neuroimage. 2009 Oct 1;47(4):2073-82 - PubMed
  92. Ann N Y Acad Sci. 1990;608:179-207; discussion 207-11 - PubMed
  93. J Comp Neurol. 1988 Aug 8;274(2):168-77 - PubMed
  94. J Cogn Neurosci. 2008 Sep;20(9):1687-97 - PubMed
  95. Ann N Y Acad Sci. 2002 Dec;978:205-18 - PubMed
  96. J Physiol. 1987 Dec;394:351-66 - PubMed
  97. J Neurophysiol. 1999 Nov;82(5):2693-704 - PubMed
  98. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2504-15 - PubMed
  99. Cerebellum. 2008;7(4):611-5 - PubMed
  100. J Neurophysiol. 2009 Oct;102(4):2039-54 - PubMed
  101. J Neurophysiol. 1996 Dec;76(6):4140-51 - PubMed
  102. Nature. 1999 Aug 26;400(6747):867-9 - PubMed
  103. Nat Neurosci. 2009 Sep;12(9):1171-9 - PubMed
  104. J Neurophysiol. 1988 Dec;60(6):2091-121 - PubMed
  105. Ann N Y Acad Sci. 2002 Dec;978:50-62 - PubMed
  106. Elife. 2013 Feb 26;2:e00400 - PubMed
  107. J Neurosci. 1997 Jan 1;17(1):438-58 - PubMed
  108. J Neurosci. 2002 Nov 15;22(22):9668-78 - PubMed
  109. J Neurophysiol. 1980 Mar;43(3):713-28 - PubMed
  110. Nat Neurosci. 2008 Oct;11(10):1185-92 - PubMed
  111. Nature. 1995 Mar 30;374(6521):453-7 - PubMed
  112. Nature. 1993 Sep 2;365(6441):50-2 - PubMed
  113. J Cogn Neurosci. 1989 Spring;1(2):153-70 - PubMed
  114. Annu Rev Neurosci. 2010;33:89-108 - PubMed
  115. Behav Neurosci. 1989 Oct;103(5):998-1008 - PubMed
  116. Behav Neurosci. 1986 Aug;100(4):443-54 - PubMed
  117. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4471-6 - PubMed
  118. J Neurophysiol. 1998 Nov;80(5):2405-16 - PubMed
  119. J Neurophysiol. 1989 Jul;62(1):198-211 - PubMed
  120. J Comp Neurol. 1991 Jun 8;308(2):224-48 - PubMed
  121. Brain. 2008 May;131(Pt 5):1332-43 - PubMed
  122. J Neurophysiol. 1994 Dec;72(6):2617-30 - PubMed
  123. Brain. 1992 Feb;115 Pt 1:155-78 - PubMed
  124. Adv Exp Med Biol. 2009;629:337-54 - PubMed
  125. Nat Rev Neurosci. 2008 Apr;9(4):304-13 - PubMed
  126. J Neurosci. 2005 Oct 26;25(43):9919-31 - PubMed
  127. J Comp Neurol. 1958 Feb;109(1):1-33 - PubMed
  128. Brain Res. 1977 Jun 10;128(2):309-28 - PubMed
  129. J Physiol Paris. 2008 Jul-Nov;102(4-6):223-32 - PubMed
  130. J Neurophysiol. 1998 Aug;80(2):818-31 - PubMed
  131. Nat Neurosci. 2000 Nov;3 Suppl:1212-7 - PubMed
  132. Neuropsychologia. 2002;40(7):788-800 - PubMed
  133. Exp Brain Res. 2010 Aug;205(1):41-55 - PubMed
  134. PLoS One. 2012;7(3):e33319 - PubMed
  135. J Neurophysiol. 2004 Jan;91(1):515-32 - PubMed
  136. Cereb Cortex. 2007 Jan;17(1):44-62 - PubMed
  137. J Neurophysiol. 2007 Jul;98(1):54-62 - PubMed
  138. Annu Rev Neurosci. 1992;15:403-42 - PubMed
  139. Science. 1994 Oct 21;266(5184):458-61 - PubMed
  140. Brain Stimul. 2013 Jul;6(4):649-53 - PubMed
  141. Nat Neurosci. 2014 Mar;17(3):416-22 - PubMed
  142. Behav Brain Sci. 1997 Jun;20(2):229-45; discussion 245-77 - PubMed
  143. J Neurosci. 2012 Mar 21;32(12):4230-9 - PubMed
  144. Exp Brain Res. 2009 Jan;192(2):241-51 - PubMed

Publication Types

Grant support