Display options
Share it on

Nano Lett. 2014 Jun 11;14(6):3412-8. doi: 10.1021/nl500934v. Epub 2014 May 27.

Tunable assembly of heterogeneously charged colloids.

Nano letters

Emanuela Bianchi, Christos N Likos, Gerhard Kahl

Affiliations

  1. Institut für Theoretische Physik and Center for Computational Materials Science (CMS), Technische Universität Wien , Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

PMID: 24842542 PMCID: PMC4055618 DOI: 10.1021/nl500934v

Abstract

The self-assembly of colloidal particles is a route to designed materials production that combines high flexibility, cost effectiveness, and the opportunity to create ordered structures at length scales ranging from nano- to micrometers. For many practical applications in electronics, photovoltaics, and biomimetic material synthesis, ordered mono- and bilayers are often needed. Here we present a novel and simple way to tune via external parameters the ordering of heterogeneously charged colloids into quasi two-dimensional structures. Depending on the charges of the underlying substrate and of the particles, a rich and versatile assembly scenario takes place, resulting from the complex interplay between directional attractive and repulsive particle-particle and particle-substrate interactions. Upon subtle variations of the relative charge of the system components, emerging via pH modification, reversible changes either from extended aggregates to a monomeric phase or from triangular to square domains are observed.

References

  1. Langmuir. 2008 Dec 2;24(23):13312-20 - PubMed
  2. Chemphyschem. 2000 Aug 4;1(1):18-52 - PubMed
  3. Angew Chem Int Ed Engl. 2011 Jan 10;50(2):360-88 - PubMed
  4. Langmuir. 2010 Dec 21;26(24):19225-9 - PubMed
  5. Phys Rev Lett. 2008 Apr 11;100(14):148304 - PubMed
  6. Nature. 2005 Sep 29;437(7059):671-9 - PubMed
  7. Nat Mater. 2009 Oct;8(10):843-9 - PubMed
  8. Nature. 2013 Nov 7;503(7474):99-103 - PubMed
  9. Phys Chem Chem Phys. 2011 Apr 14;13(14):6397-410 - PubMed
  10. Nat Commun. 2013;4:2167 - PubMed
  11. Nature. 2008 Jul 24;454(7203):501-4 - PubMed
  12. Nano Lett. 2012 Oct 10;12(10):5299-303 - PubMed
  13. Phys Rev Lett. 2008 Feb 8;100(5):058302 - PubMed
  14. Chem Soc Rev. 2012 Sep 21;41(18):6178-94 - PubMed
  15. Phys Rev Lett. 2013 Mar 29;110(13):138301 - PubMed
  16. Phys Rev Lett. 2003 Mar 28;90(12):128303 - PubMed
  17. Nat Commun. 2012 Apr 24;3:794 - PubMed
  18. Phys Rev Lett. 2009 Nov 27;103(22):228301 - PubMed
  19. Nano Lett. 2007 Dec;7(12):3813-7 - PubMed
  20. Phys Rev Lett. 2003 Apr 18;90(15):158302 - PubMed
  21. ACS Nano. 2013 May 28;7(5):4657-67 - PubMed
  22. ACS Nano. 2010 Jul 27;4(7):3853-60 - PubMed
  23. Nature. 2011 Jan 20;469(7330):381-4 - PubMed
  24. J Chem Phys. 2013 Feb 21;138(7):074902 - PubMed
  25. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10348-53 - PubMed
  26. Nat Commun. 2013;4:1489 - PubMed
  27. J Am Chem Soc. 2006 Sep 13;128(36):11921-6 - PubMed
  28. Science. 2008 Nov 14;322(5904):1077-81 - PubMed
  29. Macromol Rapid Commun. 2010 Jan 18;31(2):150-68 - PubMed
  30. Phys Rev Lett. 2011 Mar 25;106(12):128302 - PubMed

Publication Types