Display options
Share it on

Angew Chem Int Ed Engl. 2014 Aug 18;53(34):9000-3. doi: 10.1002/anie.201404089. Epub 2014 Jul 02.

"Raft" formation by two-dimensional self-assembly of block copolymer rod micelles in aqueous solution.

Angewandte Chemie (International ed. in English)

Georgios Rizis, Theo G M van de Ven, Adi Eisenberg

Affiliations

  1. McGill University, 801 Sherbrooke St. West, Montreal, H3A 0B8, Quebec (Canada).

PMID: 24990629 DOI: 10.1002/anie.201404089

Abstract

Block copolymers can form a broad range of self-assembled aggregates. In solution, planar assemblies usually form closed structures such as vesicles; thus, free-standing sheet formation can be challenging. While most polymer single crystals are planar, their growth usually occurs by uptake of individual chains. Here we report a novel lamella formation mechanism: core-crystalline spherical micelles link up to form rods in solution, which then associate to yield planar arrays. For the system of poly(ethylene oxide)-block-polycaprolactone in water, co-assembly with homopolycaprolactone can induce a series of morphological changes that yield either rods or lamellae. The underlying lamella formation mechanism was elucidated by electron microscopy, while light scattering was used to probe the kinetics. The hierarchical growth of lamellae from one-dimensional rod subunits, which had been formed from spherical assemblies, is novel and controllable in terms of product size and aspect ratio.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: block copolymers; hierarchical self-assembly; lamellae; polymer crystallinity; rod micelles

Publication Types