Display options
Share it on

Nature. 2014 Jul 03;511(7507):65-9. doi: 10.1038/nature13455.

Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions.

Nature

Jongwon Lee, Mykhailo Tymchenko, Christos Argyropoulos, Pai-Yen Chen, Feng Lu, Frederic Demmerle, Gerhard Boehm, Markus-Christian Amann, Andrea Alù, Mikhail A Belkin

Affiliations

  1. Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
  2. Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.

PMID: 24990746 DOI: 10.1038/nature13455

Abstract

Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.

References

  1. Opt Express. 2006 Oct 16;14(21):9570-5 - PubMed
  2. Science. 2006 Jun 23;312(5781):1780-2 - PubMed
  3. Nat Commun. 2013;4:2021 - PubMed
  4. Science. 2006 Jul 28;313(5786):502-4 - PubMed
  5. Nano Lett. 2013 Mar 13;13(3):1086-91 - PubMed
  6. Science. 2011 Oct 21;334(6054):333-7 - PubMed
  7. Nano Lett. 2012 Feb 8;12(2):1026-31 - PubMed
  8. Phys Rev Lett. 2012 Jun 29;108(26):263905 - PubMed
  9. Science. 2006 Jun 23;312(5781):1777-80 - PubMed
  10. Phys Rev Lett. 2011 Jul 22;107(4):045901 - PubMed
  11. Phys Rev Lett. 1989 Feb 27;62(9):1041-1044 - PubMed
  12. Phys Rev Lett. 2000 Oct 30;85(18):3966-9 - PubMed
  13. Science. 2012 Jan 27;335(6067):427 - PubMed
  14. Opt Lett. 2009 Jul 1;34(13):1997-9 - PubMed
  15. Nature. 2012 Dec 13;492(7428):229-33 - PubMed
  16. Science. 2008 Oct 3;322(5898):71-3 - PubMed
  17. Phys Rev Lett. 2010 Nov 5;105(19):196402 - PubMed
  18. Phys Rev Lett. 2013 May 17;110(20):203903 - PubMed
  19. Opt Lett. 2008 Sep 1;33(17):1975-7 - PubMed
  20. Nat Commun. 2013;4:2882 - PubMed
  21. Adv Mater. 2012 Nov 20;24(44):OP281-304 - PubMed
  22. Science. 2005 Apr 22;308(5721):534-7 - PubMed

Publication Types