Display options
Share it on

Plant Physiol. 2014 Jul;165(3):978-990. doi: 10.1104/pp.114.238311. Epub 2014 May 28.

Lipoate-Protein Ligase and Octanoyltransferase Are Essential for Protein Lipoylation in Mitochondria of Arabidopsis.

Plant physiology

Ralph Ewald, Christiane Hoffmann, Alexandra Florian, Ekkehard Neuhaus, Alisdair R Fernie, Hermann Bauwe

Affiliations

  1. Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.).
  2. Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.) [email protected].

PMID: 24872381 PMCID: PMC4081350 DOI: 10.1104/pp.114.238311

Abstract

Prosthetic lipoyl groups are required for the function of several essential multienzyme complexes, such as pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), and the glycine cleavage system (glycine decarboxylase [GDC]). How these proteins are lipoylated has been extensively studied in prokaryotes and yeast (Saccharomyces cerevisiae), but little is known for plants. We earlier reported that mitochondrial fatty acid synthesis by ketoacyl-acyl carrier protein synthase is not vital for protein lipoylation in Arabidopsis (Arabidopsis thaliana) and does not play a significant role in roots. Here, we identify Arabidopsis lipoate-protein ligase (AtLPLA) as an essential mitochondrial enzyme that uses octanoyl-nucleoside monophosphate and possibly other donor substrates for the octanoylation of mitochondrial PDH-E2 and GDC H-protein; it shows no reactivity with bacterial and possibly plant KGDH-E2. The octanoate-activating enzyme is unknown, but we assume that it uses octanoyl moieties provided by mitochondrial β-oxidation. AtLPLA is essential for the octanoylation of PDH-E2, whereas GDC H-protein can optionally also be octanoylated by octanoyltransferase (LIP2) using octanoyl chains provided by mitochondrial ketoacyl-acyl carrier protein synthase to meet the high lipoate requirement of leaf mesophyll mitochondria. Similar to protein lipoylation in yeast, LIP2 likely also transfers octanoyl groups attached to the H-protein to KGDH-E2 but not to PDH-E2, which is exclusively octanoylated by LPLA. We suggest that LPLA and LIP2 together provide a basal protein lipoylation network to plants that is similar to that in other eukaryotes.

© 2014 American Society of Plant Biologists. All Rights Reserved.

References

  1. Plant Physiol. 2010 Mar;152(3):1501-13 - PubMed
  2. Plant Cell Environ. 2014 Feb;37(2):300-11 - PubMed
  3. Plant Physiol. 1994 Dec;106(4):1633-1638 - PubMed
  4. J Bacteriol. 1995 Jan;177(1):1-10 - PubMed
  5. Mol Microbiol. 2011 Apr;80(2):350-63 - PubMed
  6. Trends Plant Sci. 2010 Jun;15(6):330-6 - PubMed
  7. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194-8 - PubMed
  8. J Biol Chem. 2007 May 11;282(19):14178-85 - PubMed
  9. J Biol Chem. 2009 Aug 28;284(35):23234-42 - PubMed
  10. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808-12 - PubMed
  11. Plant Cell. 2001 Jul;13(7):1499-510 - PubMed
  12. Mol Microbiol. 2011 Apr;80(2):335-49 - PubMed
  13. Plant Biol (Stuttg). 2014 Jan;16(1):35-42 - PubMed
  14. Plant Cell. 2002 Dec;14(12):2985-94 - PubMed
  15. New Phytol. 2008;179(4):987-1003 - PubMed
  16. Plant Physiol. 1998 Nov;118(3):935-43 - PubMed
  17. Plant Physiol. 2007 Sep;145(1):41-8 - PubMed
  18. J Biol Chem. 2001 Aug 3;276(31):28819-23 - PubMed
  19. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  20. J Biol Chem. 2000 Feb 18;275(7):5016-25 - PubMed
  21. Plant J. 1998 Dec;16(6):735-43 - PubMed
  22. Plant Physiol. 2007 Nov;145(3):626-39 - PubMed
  23. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  24. Arch Biochem Biophys. 1967 Feb;118(2):395-401 - PubMed
  25. Yeast. 2013 Oct;30(10):415-27 - PubMed
  26. Plant Cell. 2011 Jul;23(7):2477-82 - PubMed
  27. Annu Rev Biochem. 2000;69:961-1004 - PubMed
  28. FEBS Lett. 2001 Oct 12;506(3):286-90 - PubMed
  29. FEBS J. 2009 Dec;276(23):6985-91 - PubMed
  30. Plant Mol Biol. 2003 Jul;52(4):865-72 - PubMed
  31. Plant Physiol. 2007 Jul;144(3):1328-35 - PubMed
  32. Science. 2003 Aug 1;301(5633):653-7 - PubMed
  33. Gene. 2007 May 15;393(1-2):53-61 - PubMed
  34. J Biol Chem. 2004 Feb 27;279(9):8242-51 - PubMed
  35. Microbiol Mol Biol Rev. 2010 Jun;74(2):200-28 - PubMed
  36. Plant J. 2000 Sep;23(6):723-33 - PubMed
  37. Trends Plant Sci. 2010 Aug;15(8):462-70 - PubMed
  38. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1591-6 - PubMed
  39. Plant Cell. 1995 Jul;7(7):957-70 - PubMed
  40. Annu Rev Plant Biol. 2002;53:357-75 - PubMed
  41. Plant J. 2005 Jul;43(1):153-63 - PubMed
  42. FEBS J. 2009 Aug;276(15):4012-22 - PubMed
  43. Nat Protoc. 2006;1(1):387-96 - PubMed
  44. Plant Physiol. 2003 Jun;132(2):1065-76 - PubMed
  45. J Biol Chem. 2005 Sep 30;280(39):33645-51 - PubMed
  46. Chem Biol. 2003 Dec;10(12):1293-302 - PubMed
  47. Plant J. 2003 Dec;36(5):731-40 - PubMed
  48. Mol Microbiol. 2007 Mar;63(5):1331-44 - PubMed
  49. J Biol Chem. 2005 Nov 11;280(45):38081-9 - PubMed
  50. New Phytol. 2009 Mar;181(4):832-842 - PubMed
  51. J Biol Chem. 2009 Aug 7;284(32):21317-26 - PubMed
  52. J Biol Chem. 2002 Nov 8;277(45):42663-8 - PubMed
  53. J Bacteriol. 2003 Mar;185(5):1582-9 - PubMed
  54. Trends Plant Sci. 2001 Apr;6(4):167-76 - PubMed
  55. FEBS Lett. 2002 Apr 24;517(1-3):110-4 - PubMed
  56. Plant Cell Physiol. 2001 Jun;42(6):650-6 - PubMed
  57. Orphanet J Rare Dis. 2013 Dec 17;8:192 - PubMed
  58. FEBS Lett. 2001 Jun 1;498(1):16-21 - PubMed
  59. Nat Protoc. 2006;1(1):418-28 - PubMed

Publication Types