Display options
Share it on

Beilstein J Nanotechnol. 2014 May 12;5:610-21. doi: 10.3762/bjnano.5.72. eCollection 2014.

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone.

Beilstein journal of nanotechnology

Xiaohong Wang, Heinz C Schröder, Werner E G Müller

Affiliations

  1. ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.

PMID: 24991497 PMCID: PMC4077312 DOI: 10.3762/bjnano.5.72

Abstract

Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications.

Keywords: biocalcite; bioprinting; bone; bone formation; calcareous spicules; sponge

References

  1. Biochim Biophys Acta. 2011 Dec;1810(12):1178-94 - PubMed
  2. Proc Inst Mech Eng H. 2010 Dec;224(12):1329-43 - PubMed
  3. Colloids Surf B Biointerfaces. 2013 Feb 1;102:281-7 - PubMed
  4. Calcif Tissue Res. 1970;6(2):168-71 - PubMed
  5. J Biomed Mater Res B Appl Biomater. 2005 Aug;74(2):782-8 - PubMed
  6. FEBS J. 2011 Apr;278(7):1145-55 - PubMed
  7. PLoS One. 2012;7(4):e34617 - PubMed
  8. Chemistry. 2013 May 3;19(19):5790-804 - PubMed
  9. J Cell Biol. 1994 Dec;127(6 Pt 1):1755-66 - PubMed
  10. Acta Biomater. 2011 Jun;7(6):2661-71 - PubMed
  11. J Exp Biol. 2000 Nov;203(Pt 22):3445-57 - PubMed
  12. Pharmacol Ther. 1997;74(1):1-20 - PubMed
  13. Mar Drugs. 2013 Mar 08;11(3):718-46 - PubMed
  14. Biomaterials. 2013 Nov;34(34):8671-80 - PubMed
  15. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14170-5 - PubMed
  16. Acta Biomater. 2014 Jan;10(1):450-62 - PubMed
  17. Int J Biol Macromol. 2009 Oct 1;45(3):289-92 - PubMed
  18. Pflugers Arch. 1988 May;411(5):546-53 - PubMed
  19. Connect Tissue Res. 1996;35(1-4):343-9 - PubMed
  20. Calcif Tissue Res. 1973;12(1):73-90 - PubMed
  21. Genomics. 1998 Dec 15;54(3):484-93 - PubMed
  22. FEBS Open Bio. 2013 Aug 16;3:357-62 - PubMed
  23. Curr Opin Biotechnol. 2012 Aug;23(4):570-8 - PubMed
  24. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):361-5 - PubMed
  25. Am J Clin Nutr. 2010 Jul;92(1):101-5 - PubMed
  26. J Struct Biol. 2011 Jun;174(3):527-35 - PubMed
  27. J Gen Physiol. 1991 Feb;97(2):321-49 - PubMed
  28. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):415-24 - PubMed
  29. Biomaterials. 2009 Mar;30(8):1648-56 - PubMed
  30. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6234-8 - PubMed
  31. J Histochem Cytochem. 2001 Aug;49(8):1045-53 - PubMed
  32. Biomater Sci. 2013 Jun 7;1(6):669-678 - PubMed
  33. Calcif Tissue Int. 2008 Jan;82(1):66-76 - PubMed
  34. Nat Rev Drug Discov. 2008 Feb;7(2):168-81 - PubMed
  35. Int Rev Cytol. 2004;235:53-92 - PubMed
  36. J Enzyme Inhib Med Chem. 2004 Jun;19(3):199-229 - PubMed
  37. Biomaterials. 2008 Oct;29(28):3799-806 - PubMed
  38. J Histochem Cytochem. 1984 Mar;32(3):285-8 - PubMed
  39. Curr Pharm Des. 2008;14(7):603-14 - PubMed
  40. Eur J Biochem. 2000 Aug;267(15):4878-87 - PubMed
  41. Curr Top Dev Biol. 2007;78:127-71 - PubMed
  42. Chem Rev. 2008 Nov;108(11):4332-432 - PubMed
  43. J Struct Biol. 2008 Jun;162(3):468-79 - PubMed
  44. J Biol Chem. 2001 Dec 28;276(52):48615-8 - PubMed
  45. Clin Orthop Relat Res. 1977 Nov-Dec;(129):279-92 - PubMed
  46. Artif Organs. 2011 Nov;35(11):1132-6 - PubMed
  47. Calcif Tissue Int. 2014 May;94(5):495-509 - PubMed
  48. Cell Tissue Res. 2002 Nov;310(2):163-8 - PubMed
  49. Biomaterials. 2011 Dec;32(36):9622-9 - PubMed
  50. Biol Cell. 1994;81(2):131-41 - PubMed
  51. Int Rev Cell Mol Biol. 2009;273:69-115 - PubMed
  52. Arthritis Res Ther. 2012 Jul 27;14(4):R176 - PubMed
  53. J Tissue Eng Regen Med. 2013 Oct;7(10):767-76 - PubMed
  54. Dent Mater J. 2009 Mar;28(2):234-42 - PubMed
  55. Biochem Biophys Res Commun. 1985 Jan 16;126(1):457-63 - PubMed
  56. J Cell Sci. 2009 Mar 1;122(Pt 5):716-26 - PubMed
  57. Annu Rev Biochem. 1995;64:375-401 - PubMed
  58. Cell Tissue Res. 1977 Jul 19;181(4):553-67 - PubMed
  59. J Biomater Appl. 2011 Sep;26(3):359-80 - PubMed
  60. J Biol Chem. 1981 Jan 25;256(2):608-12 - PubMed
  61. PLoS One. 2009 May 20;4(5):e5634 - PubMed

Publication Types