Display options
Share it on

Biosci Microbiota Food Health. 2012;31(4):93-102. doi: 10.12938/bmfh.31.93. Epub 2012 Oct 25.

Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

Bioscience of microbiota, food and health

Yosuke Matsuo, Yukihiro Miyoshi, Sanae Okada, Eiichi Satoh

Affiliations

  1. Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

PMID: 24936355 PMCID: PMC4034283 DOI: 10.12938/bmfh.31.93

Abstract

A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

Keywords: Caco-2; Lactobacillus reuteri; adhesion; receptor-like molecules

References

  1. J Cell Biol. 2000 Feb 21;148(4):727-39 - PubMed
  2. Cell Microbiol. 2005 May;7(5):613-20 - PubMed
  3. Lett Appl Microbiol. 1998 Sep;27(3):130-4 - PubMed
  4. Appl Environ Microbiol. 2004 Feb;70(2):1176-81 - PubMed
  5. J Cell Biol. 1998 Nov 2;143(3):795-813 - PubMed
  6. J Appl Bacteriol. 1996 Nov;81(5):474-80 - PubMed
  7. Genome Biol. 2004;5(3):214 - PubMed
  8. J Clin Invest. 2004 May;113(10):1482-9 - PubMed
  9. Nihon Yakurigaku Zasshi. 2003 Nov;122(5):419-25 - PubMed
  10. Biochem Biophys Res Commun. 2001 Aug 3;285(5):1369-76 - PubMed
  11. Biochim Biophys Acta. 2005 Dec 30;1746(3):305-13 - PubMed
  12. Nature. 1997 Jun 5;387(6633):569-72 - PubMed
  13. J Nutr. 2000 Feb;130(2S Suppl):391S-395S - PubMed
  14. FEMS Microbiol Lett. 1996 Oct 15;144(1):33-8 - PubMed
  15. Food Chem Toxicol. 1998 Dec;36(12):1085-94 - PubMed
  16. J Food Prot. 1998 Oct;61(10):1275-80 - PubMed
  17. J Virol. 1996 Mar;70(3):1406-14 - PubMed
  18. FEMS Immunol Med Microbiol. 2002 Jan 14;32(2):105-10 - PubMed
  19. Nutr Rev. 1992 Dec;50(12):438-46 - PubMed
  20. Curr Microbiol. 1994 Apr;28(4):231-6 - PubMed
  21. Histochem Cell Biol. 2007 Jan;127(1):13-30 - PubMed
  22. Genome Biol. 2004;5(4):219 - PubMed
  23. Mol Biol Evol. 2002 May;19(5):608-18 - PubMed
  24. Curr Microbiol. 1996 Jul;33(1):31-4 - PubMed
  25. Biochim Biophys Acta. 2004 Dec 6;1742(1-3):133-40 - PubMed
  26. Clin Microbiol Rev. 2005 Jul;18(3):521-40 - PubMed
  27. J Gen Microbiol. 1992 Dec;138(12):2657-61 - PubMed
  28. Vet Res. 2006 Nov-Dec;37(6):791-812 - PubMed
  29. Vaccine. 2000 May 22;18(23):2613-23 - PubMed
  30. Infect Immun. 1997 Apr;65(4):1357-63 - PubMed
  31. J Biomed Mater Res. 2002 Sep 5;61(3):360-9 - PubMed
  32. J Dairy Sci. 1998 Sep;81(9):2336-40 - PubMed
  33. Biosci Biotechnol Biochem. 2006 Jul;70(7):1622-8 - PubMed
  34. J Cell Biol. 1998 Sep 21;142(6):1413-27 - PubMed
  35. Appl Environ Microbiol. 1994 Dec;60(12):4487-94 - PubMed
  36. Microb Pathog. 1996 Oct;21(4):299-305 - PubMed

Publication Types