Display options
Share it on

Front Plant Sci. 2014 May 05;5:175. doi: 10.3389/fpls.2014.00175. eCollection 2014.

Polyamines and abiotic stress in plants: a complex relationship.

Frontiers in plant science

Rakesh Minocha, Rajtilak Majumdar, Subhash C Minocha

Affiliations

  1. US Forest Service, Northern Research Station Durham, NH, USA.
  2. U.S. Department of Agriculture, Agricultural Research Service Geneva, NY, USA.
  3. Department of Biological Sciences, University of New Hampshire Durham, NH, USA.

PMID: 24847338 PMCID: PMC4017135 DOI: 10.3389/fpls.2014.00175

Abstract

The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

Keywords: arginine; biochemical markers; gamma-aminobutyric acid; glutamate; ornithine; proline; reactive oxygen species; stress priming

References

  1. AoB Plants. 2013;5:pls052 - PubMed
  2. Biotechnol Lett. 2006 Dec;28(23):1867-76 - PubMed
  3. Plant Physiol Biochem. 2009 Apr;47(4):262-71 - PubMed
  4. J Plant Physiol. 2012 Jan 1;169(1):41-9 - PubMed
  5. Plant Sci. 2001 Apr;160(5):869-875 - PubMed
  6. Arabidopsis Book. 2010;8:e0140 - PubMed
  7. Biochem J. 1997 Jul 15;325 ( Pt 2):289-97 - PubMed
  8. Plant Signal Behav. 2009 Nov;4(11):1099-101 - PubMed
  9. Plant J. 2012 Nov;72(4):585-99 - PubMed
  10. Plant Sci. 2011 Jan;180(1):31-8 - PubMed
  11. J Exp Bot. 2011 May;62(8):2899-914 - PubMed
  12. Ecology. 2006 May;87(5):1267-80 - PubMed
  13. Physiol Mol Biol Plants. 2013 Jan;19(1):91-103 - PubMed
  14. Plant Physiol Biochem. 2012 Oct;59:90-7 - PubMed
  15. Environ Pollut. 1988;54(3-4):249-74 - PubMed
  16. Plant Physiol Biochem. 2005 Aug;43(8):729-45 - PubMed
  17. Plant J. 2005 Aug;43(3):425-36 - PubMed
  18. J Integr Plant Biol. 2014 Feb;56(2):114-21 - PubMed
  19. Plant Physiol. 2008 Oct;148(2):1094-105 - PubMed
  20. Plant Signal Behav. 2011 Feb;6(2):243-50 - PubMed
  21. Annu Rev Plant Biol. 2004;55:459-93 - PubMed
  22. Oecologia. 2011 Oct;167(2):355-68 - PubMed
  23. Biochem Biophys Res Commun. 2009 Jan 9;378(2):313-8 - PubMed
  24. Transgenic Res. 2008 Apr;17(2):251-63 - PubMed
  25. Plant Physiol. 2005 Jan;137(1):209-19 - PubMed
  26. Amino Acids. 2010 Apr;38(4):1117-29 - PubMed
  27. Eur Biophys J. 1999;28(7):552-63 - PubMed
  28. Gene. 2014 Apr 1;538(2):366-72 - PubMed
  29. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9909-14 - PubMed
  30. J Plant Physiol. 2006 Mar;163(5):506-16 - PubMed
  31. Plant Signal Behav. 2011 Feb;6(2):278-86 - PubMed
  32. Plant Cell Rep. 2006 Oct;25(10):1111-21 - PubMed
  33. Plant Mol Biol. 2009 Jun;70(3):253-64 - PubMed
  34. J Plant Physiol. 2014 Jan 15;171(2):48-51 - PubMed
  35. Plant Physiol. 2006 Sep;142(1):193-206 - PubMed
  36. FEMS Microbiol Ecol. 2013 Feb;83(2):478-93 - PubMed
  37. Stroke. 2009 Oct;40(10):3356-61 - PubMed
  38. Plant Physiol Biochem. 2010 Jul;48(7):547-52 - PubMed
  39. Front Plant Sci. 2011 Dec 02;2:85 - PubMed
  40. Biotechnol Adv. 2011 May-Jun;29(3):300-11 - PubMed
  41. Plant Physiol. 1990 Oct;94(2):406-10 - PubMed
  42. Plant Physiol Biochem. 2013 Sep;70:424-32 - PubMed
  43. Environ Pollut. 1990;64(3-4):375-83 - PubMed
  44. Plant Signal Behav. 2009 Nov;4(11):1016-8 - PubMed
  45. Gene. 2014 Mar 1;537(1):70-8 - PubMed
  46. PLoS One. 2013;8(4):e60325 - PubMed
  47. Plant Cell Physiol. 2008 Sep;49(9):1342-9 - PubMed
  48. Ann Bot. 2010 Jan;105(1):1-6 - PubMed
  49. Ecotoxicol Environ Saf. 2013 Nov;97:94-102 - PubMed
  50. J Membr Biol. 1999 Jan 15;167(2):127-40 - PubMed
  51. Planta. 2014 May;239(5):979-88 - PubMed
  52. Plant Cell Physiol. 2004 Jun;45(6):712-22 - PubMed
  53. Plant Signal Behav. 2010 Jan;5(1):26-33 - PubMed
  54. Plant Biol (Stuttg). 2014 Mar;16(2):297-305 - PubMed
  55. Plant Physiol Biochem. 2010 Jul;48(7):490-5 - PubMed
  56. Biochem Soc Trans. 2003 Apr;31(2):371-4 - PubMed
  57. Appl Biochem Biotechnol. 2012 Nov;168(6):1476-88 - PubMed
  58. J Exp Bot. 2012 Sep;63(14):5003-15 - PubMed
  59. Plant Cell Environ. 2014 Apr;37(4):864-85 - PubMed
  60. Plant Physiol. 2005 May;138(1):276-86 - PubMed
  61. Physiol Mol Biol Plants. 2012 Oct;18(4):331-6 - PubMed
  62. Biochem Biophys Res Commun. 2004 Jan 9;313(2):369-75 - PubMed
  63. Genome Res. 2014 Apr;24(4):604-15 - PubMed
  64. J Exp Bot. 2009;60(6):1859-71 - PubMed
  65. Environ Monit Assess. 2010 Dec;171(1-4):1-2 - PubMed
  66. Plant Signal Behav. 2012 Sep 1;7(9):1084-7 - PubMed
  67. Plant Biotechnol J. 2014 Jun;12(5):601-12 - PubMed
  68. Plant J. 2009 Mar;57(6):1065-78 - PubMed
  69. Plant Cell Physiol. 2012 Apr;53(4):606-16 - PubMed
  70. J Plant Res. 2007 May;120(3):345-50 - PubMed
  71. J Plant Physiol. 2007 Aug;164(8):1062-70 - PubMed
  72. Transgenic Res. 2010 Feb;19(1):91-103 - PubMed
  73. Plant Signal Behav. 2007 May;2(3):174-7 - PubMed
  74. Amino Acids. 2014 Mar;46(3):595-603 - PubMed
  75. Cell Res. 2006 May;16(5):446-56 - PubMed
  76. Plant Physiol. 2011 Dec;157(4):2167-80 - PubMed
  77. Plant Physiol. 2001 Apr;125(4):2139-53 - PubMed
  78. OMICS. 2011 Nov;15(11):775-81 - PubMed
  79. J Proteome Res. 2013 Nov 1;12(11):4951-64 - PubMed
  80. Transgenic Res. 2013 Jun;22(3):595-605 - PubMed
  81. Plant Sci. 2011 Nov;181(5):593-603 - PubMed
  82. Plant Cell Physiol. 2013 Jun;54(6):990-1004 - PubMed
  83. Physiol Plant. 2011 Jan;141(1):40-55 - PubMed
  84. J Plant Physiol. 2013 Dec 15;170(18):1585-94 - PubMed
  85. Curr Microbiol. 2011 Feb;62(2):420-6 - PubMed
  86. Amino Acids. 2007 Feb;32(2):265-75 - PubMed
  87. FEBS Lett. 2006 Dec 22;580(30):6783-8 - PubMed
  88. Plant Physiol. 2002 Apr;128(4):1455-69 - PubMed
  89. J Integr Plant Biol. 2009 May;51(5):489-99 - PubMed
  90. Medchemcomm. 2012;3(1):14-21 - PubMed
  91. Plant Physiol Biochem. 2012 Dec;61:18-23 - PubMed
  92. FEBS Lett. 2005 Feb 28;579(6):1557-64 - PubMed
  93. Environ Pollut. 2003;123(1):75-83 - PubMed
  94. Plant Physiol. 2004 Jul;135(3):1565-73 - PubMed
  95. Plant Signal Behav. 2010 Apr;5(4):346-8 - PubMed
  96. Plant Signal Behav. 2008 Dec;3(12):1061-6 - PubMed
  97. J Exp Bot. 2014 Mar;65(5):1271-83 - PubMed
  98. Plant Physiol Biochem. 2014 Mar;76:29-35 - PubMed
  99. Plant Cell Physiol. 2006 Mar;47(3):346-54 - PubMed

Publication Types