Display options
Share it on

Biores Open Access. 2014 Jun 01;3(3):98-109. doi: 10.1089/biores.2014.0010.

Endoderm complexity in the mouse gastrula is revealed through the expression of spink3.

BioResearch open access

Hwee Ngee Goh, Peter D Rathjen, Mary Familari, Joy Rathjen

Affiliations

  1. Department of Zoology, University of Melbourne , Victoria, Australia .
  2. The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia .
  3. Department of Zoology, University of Melbourne , Victoria, Australia . ; The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia .

PMID: 24940561 PMCID: PMC4048981 DOI: 10.1089/biores.2014.0010

Abstract

Endoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation. Expression of serine peptidase inhibitor, Kazal type 3 (Spink3) was detected in EPL cell-derived endoderm, and in a band of endoderm immediately distal to the embryonic-extra-embryonic boundary in pregastrula and gastrulating embryos. Later expression marked a region of endoderm separating the yolk sac from the developing gut. In the embryo, Spink3 expression marked a region of endoderm comprising the distal visceral endoderm, as determined by an endocytosis assay, and the proximal region of the definitive endoderm. This region was distinct from the more distal definitive endoderm population, marked by thyrotropin-releasing hormone (Trh). Endoderm expressing either Spink3 or Trh could be formed during EPL cell differentiation, and the prevalence of these populations could be influenced by culture medium and growth factor addition. Moreover, further differentiation suggested that the potential of these populations differed. These approaches have revealed an unexpected complexity in the definitive endoderm lineage, a complexity that will need to be accommodated in differentiation protocols to ensure the formation of the appropriate definitive endoderm progenitor in the future.

Keywords: cellular biology; developmental biology; stem cells

References

  1. Development. 2002 Jun;129(11):2649-61 - PubMed
  2. J Cell Sci. 2000 Feb;113 ( Pt 3):555-66 - PubMed
  3. Stem Cells. 2008 Apr;26(4):894-902 - PubMed
  4. Curr Biol. 2003 Apr 1;13(7):613-7 - PubMed
  5. J Cell Sci. 2007 Jun 15;120(Pt 12):2078-90 - PubMed
  6. Development. 2004 Apr;131(7):1651-62 - PubMed
  7. Cell Differ. 1987 Jun;21(1):69-76 - PubMed
  8. Dev Cell. 2008 Oct;15(4):509-20 - PubMed
  9. Development. 1993 Nov;119(3):567-78 - PubMed
  10. J Cell Biochem. 2011 Apr;112(4):1022-34 - PubMed
  11. Bioinformatics. 2003 Jul 22;19(11):1439-40 - PubMed
  12. Development. 2006 Oct;133(19):3787-96 - PubMed
  13. Development. 2002 May;129(10):2367-79 - PubMed
  14. Genesis. 2009 Jul;47(7):447-55 - PubMed
  15. Exp Cell Res. 2009 Sep 10;315(15):2648-57 - PubMed
  16. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16806-11 - PubMed
  17. Development. 2000 Jul;127(14):3079-90 - PubMed
  18. Cell Stem Cell. 2008 Oct 9;3(4):402-15 - PubMed
  19. Annu Rev Cell Dev Biol. 1999;15:393-410 - PubMed
  20. Cell. 1995 Oct 20;83(2):279-87 - PubMed
  21. Hepatology. 2005 Sep;42(3):558-67 - PubMed
  22. Int Rev Cytol. 2007;259:1-48 - PubMed
  23. Nat Biotechnol. 2005 Dec;23(12):1542-50 - PubMed
  24. J Embryol Exp Morphol. 1985 Jun;87:27-45 - PubMed
  25. Dev Dyn. 2007 Oct;236(10):2909-17 - PubMed
  26. Development. 1993 Aug;118(4):1255-66 - PubMed
  27. Development. 1994 Jul;120(7):1919-28 - PubMed
  28. Genes Dev. 1994 Oct 15;8(20):2466-77 - PubMed
  29. PLoS One. 2012;7(6):e38645 - PubMed
  30. Development. 2002 Jul;129(14):3455-68 - PubMed
  31. Genes Dev. 1995 Sep 1;9(17):2105-16 - PubMed
  32. Trends Genet. 1993 May;9(5):162-7 - PubMed
  33. Development. 2007 Jan;134(2):251-60 - PubMed
  34. Proc Soc Exp Biol Med. 1993 Dec;204(3):237-41 - PubMed
  35. EMBO J. 1999 Apr 15;18(8):2127-36 - PubMed
  36. Development. 2001 May;128(10):1831-43 - PubMed
  37. Nat Biotechnol. 2005 Dec;23(12):1534-41 - PubMed
  38. Development. 2004 Jan;131(1):165-79 - PubMed
  39. J Cell Sci. 2014 May 15;127(Pt 10):2204-16 - PubMed
  40. Development. 2005 Oct;132(19):4363-74 - PubMed
  41. Methods Enzymol. 2003;365:3-25 - PubMed
  42. Genes Dev. 2003 Jul 1;17(13):1646-62 - PubMed
  43. Dev Dyn. 2007 Jul;236(7):1997-2003 - PubMed
  44. Dev Biol. 1986 Jun;115(2):325-39 - PubMed
  45. J Cell Sci. 2005 Nov 15;118(Pt 22):5345-55 - PubMed
  46. Biotechniques. 2002 Jun;32(6):1372-4, 1376, 1378-9 - PubMed
  47. Dev Biol. 2004 Oct 1;274(1):171-87 - PubMed
  48. Development. 1995 Nov;121(11):3877-88 - PubMed
  49. Stem Cells. 2007 Jan;25(1):29-38 - PubMed
  50. Microsc Res Tech. 1993 Nov 1;26(4):301-28 - PubMed
  51. J Cell Sci. 2011 Jun 15;124(Pt 12):1992-2000 - PubMed
  52. Stem Cells. 2005 Nov-Dec;23(10):1489-501 - PubMed
  53. Nat Genet. 1999 Aug;22(4):361-5 - PubMed
  54. Cell Stem Cell. 2011 Aug 5;9(2):144-55 - PubMed
  55. Anat Rec. 1979 May;194(1):125-41 - PubMed
  56. FASEB J. 2009 Jan;23(1):114-22 - PubMed
  57. Development. 1987 Nov;101(3):627-52 - PubMed
  58. Annu Rev Cell Dev Biol. 2009;25:221-51 - PubMed

Publication Types