Display options
Share it on

Proc Meet Acoust. 2013 Jun 02;19(1):075022. doi: 10.1121/1.4800327.

Spatial specificity and sensitivity of passive cavitation imaging for monitoring high-intensity focused ultrasound thermal ablation in ex vivo bovine liver.

Proceedings of meetings on acoustics. Acoustical Society of America

Kevin Haworth, Vasant A Salgaonkar, Nicholas M Corregan, Christy K Holland, T D Mast

PMID: 24817990 PMCID: PMC4013003 DOI: 10.1121/1.4800327

Abstract

Passive cavitation images (PCIs) generated from scattered acoustic waves are a potential technique for monitoring lesion formation during high-intensity focused ultrasound (HIFU) thermal ablation. HIFU lesion prediction by PCIs was assessed in ex vivo bovine liver samples (N=14) during 30-s sonications with 1.1-MHz continuous-wave ultrasound (1989 W/cm^2 estimated spatial-peak intensity). Treated samples were sectioned, optically scanned, and the HIFU lesions segmented based on tissue discoloration. During each insonation, a 192-element, 7-MHz linear array (L7/Iris 2, Ardent Sound) passively recorded emissions from a plane containing the HIFU propagation axis oriented parallel to the image azimuth direction. PCIs were formed from beamformed A-lines filtered into fundamental, harmonic, ultraharmonic, and inharmonic frequency bands. Lesion prediction was tested using binary classification of local tissue ablation based on thresholded PCIs, with spatial specificity and sensitivity of lesion prediction quantified by the area under receiver operating characteristic curves (AUROC). Tadpole-shaped lesions were best predicted by harmonic emissions (AUROC=0.76), prefocal lesions were best predicted by harmonic or ultraharmonic emissions (AUROC=0.86), and cigar-type focal lesions were best predicted by fundamental and harmonic emissions (AUROC=0.65). These results demonstrate spatial specificity and sensitivity when predicting HIFU lesions with PCIs.

References

  1. Ultrasound Med Biol. 2011 Jun;37(6):922-34 - PubMed
  2. J Acoust Soc Am. 1990 Jun;87(6):2451-8 - PubMed
  3. Ultrasound Med Biol. 2011 Aug;37(8):1240-51 - PubMed
  4. J Acoust Soc Am. 2009 Dec;126(6):3071-83 - PubMed
  5. Ultrasound Med Biol. 2008 Sep;34(9):1421-33 - PubMed
  6. Ultrasound Med Biol. 2004 Feb;30(2):261-9 - PubMed
  7. Int J Hyperthermia. 2007 Mar;23(2):89-104 - PubMed
  8. Gene Ther. 2007 Mar;14(6):465-75 - PubMed
  9. Ultrasonics. 1988 Sep;26(5):280-5 - PubMed
  10. Radiology. 1982 Apr;143(1):29-36 - PubMed
  11. J Acoust Soc Am. 2012 Jul;132(1):544-53 - PubMed
  12. Adv Drug Deliv Rev. 2008 Jun 30;60(10):1153-66 - PubMed
  13. Biophys J. 2008 Apr 1;94(7):L51-3 - PubMed
  14. Radiology. 2012 Jan;262(1):252-61 - PubMed
  15. Ultrasound Med Biol. 2009 Apr;35(4):603-15 - PubMed
  16. Ultrasound Med Biol. 2000 Sep;26(7):1153-60 - PubMed
  17. Ultrasound Med Biol. 1996;22(4):483-91 - PubMed
  18. Biophys J. 2003 Dec;85(6):3502-12 - PubMed
  19. Adv Drug Deliv Rev. 2008 Jun 30;60(10):1103-16 - PubMed
  20. Ultrasound Med Biol. 2007 Jun;33(6):924-33 - PubMed
  21. Int J Hyperthermia. 2007 Mar;23(2):105-20 - PubMed
  22. Magn Reson Imaging. 1999 May;17(4):603-10 - PubMed
  23. Acad Radiol. 2011 Sep;18(9):1123-32 - PubMed
  24. Br J Radiol. 2003 Sep;76(909):590-9 - PubMed
  25. Int J Pharm. 2011 Mar 15;406(1-2):114-6 - PubMed
  26. Pharm Res. 2002 Aug;19(8):1160-9 - PubMed
  27. J Pharm Sci. 2002 Feb;91(2):444-53 - PubMed
  28. Ultrasound Med Biol. 2009 Dec;35(12):1982-94 - PubMed
  29. Ultrasound Med Biol. 2008 Sep;34(9):1434-48 - PubMed

Publication Types

Grant support