Display options
Share it on

Cilia. 2014 Jun 18;3:6. doi: 10.1186/2046-2530-3-6. eCollection 2014.

Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8.

Cilia

Kenneth B Schou, Stine K Morthorst, Søren T Christensen, Lotte B Pedersen

Affiliations

  1. Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark ; Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
  2. Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.

PMID: 25018876 PMCID: PMC4094338 DOI: 10.1186/2046-2530-3-6

Abstract

BACKGROUND: Assembly of primary cilia relies on vesicular trafficking towards the cilium base and intraflagellar transport (IFT) between the base and distal tip of the cilium. Recent studies have identified several key regulators of these processes, including Rab GTPases such as Rab8 and Rab11, the Rab8 guanine nucleotide exchange factor Rabin8, and the transport protein particle (TRAPP) components TRAPPC3, -C9, and -C10, which physically interact with each other and function together with Bardet Biedl syndrome (BBS) proteins in ciliary membrane biogenesis. However, despite recent advances, the exact molecular mechanisms by which these proteins interact and target to the basal body to promote ciliogenesis are not fully understood.

RESULTS: We surveyed the human proteome for novel ASPM, SPD-2, Hydin (ASH) domain-containing proteins. We identified the TRAPP complex subunits TRAPPC8, -9, -10, -11, and -13 as novel ASH domain-containing proteins. In addition to a C-terminal ASH domain region, we predict that the N-terminus of TRAPPC8, -9, -10, and -11, as well as their yeast counterparts, consists of an α-solenoid bearing stretches of multiple tetratricopeptide (TPR) repeats. Immunofluorescence microscopy analysis of cultured mammalian cells revealed that exogenously expressed ASH domains, as well as endogenous TRAPPC8, localize to the centrosome/basal body. Further, depletion of TRAPPC8 impaired ciliogenesis and GFP-Rabin8 centrosome targeting.

CONCLUSIONS: Our results suggest that ASH domains confer targeting to the centrosome and cilia, and that TRAPPC8 has cilia-related functions. Further, we propose that the yeast TRAPPII complex and its mammalian counterpart are evolutionarily related to the bacterial periplasmic trafficking chaperone PapD of the usher pili assembly machinery.

Keywords: ASH domain; Centrosome; Cilia; Golgi; MSP domain; Rab8; Rabin8; TPR repeat; TRAPPII complex; Vesicle trafficking

References

  1. Cell. 2007 Jun 15;129(6):1201-13 - PubMed
  2. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2759-64 - PubMed
  3. N Engl J Med. 2011 Apr 21;364(16):1533-43 - PubMed
  4. J Cell Biol. 2008 Feb 11;180(3):633-43 - PubMed
  5. Nat Rev Microbiol. 2009 Nov;7(11):765-74 - PubMed
  6. J Cell Sci. 2010 Feb 15;123(Pt 4):499-503 - PubMed
  7. Mol Biol Cell. 2011 Jun 15;22(12):2083-93 - PubMed
  8. Bioinformatics. 2006 May 1;22(9):1031-5 - PubMed
  9. Bioessays. 2006 Feb;28(2):191-8 - PubMed
  10. Curr Top Dev Biol. 2008;85:63-82 - PubMed
  11. Mol Biol Cell. 2002 Sep;13(9):3268-80 - PubMed
  12. J Cell Biol. 2012 Dec 24;199(7):1083-101 - PubMed
  13. Orphanet J Rare Dis. 2011 Jun 13;6:39 - PubMed
  14. J Cell Biol. 2009 Dec 28;187(7):1117-32 - PubMed
  15. Cell Mol Life Sci. 2012 Dec;69(23):3933-44 - PubMed
  16. Curr Biol. 2007 Jul 3;17(13):1134-9 - PubMed
  17. EMBO J. 2011 Apr 20;30(8):1659-70 - PubMed
  18. Trends Parasitol. 2005 May;21(5):224-31 - PubMed
  19. Eur J Hum Genet. 2013 Feb;21(2):229-32 - PubMed
  20. J Cell Biol. 1962 Nov;15:363-77 - PubMed
  21. PLoS One. 2011;6(8):e23350 - PubMed
  22. Cilia. 2012 Apr 25;1(1):4 - PubMed
  23. Nat Struct Mol Biol. 2010 Nov;17(11):1298-304 - PubMed
  24. J Mol Biol. 1994 Sep 30;242(4):309-20 - PubMed
  25. Pediatr Nephrol. 2011 Jul;26(7):1039-56 - PubMed
  26. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 - PubMed
  27. Cell. 2010 Jun 25;141(7):1208-19 - PubMed
  28. J Cell Biol. 1997 May 19;137(4):881-90 - PubMed
  29. EMBO J. 2006 Aug 23;25(16):3750-61 - PubMed
  30. J Cell Biol. 2007 Feb 12;176(4):473-82 - PubMed
  31. Dev Dyn. 2008 Aug;237(8):1993-2006 - PubMed
  32. J Biol Chem. 2012 May 4;287(19):15602-9 - PubMed
  33. Traffic. 2011 Jun;12(6):715-25 - PubMed
  34. BMC Biol. 2007 Aug 07;5:33 - PubMed
  35. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 - PubMed
  36. Cell Rep. 2013 Jun 27;3(6):1806-14 - PubMed
  37. J Cell Sci. 2011 Aug 1;124(Pt 15):2539-51 - PubMed
  38. Hum Mol Genet. 2012 Apr 15;21(8):1835-47 - PubMed
  39. Am J Hum Genet. 2013 Jul 11;93(1):181-90 - PubMed
  40. J Biol Chem. 2005 Aug 12;280(32):29233-41 - PubMed
  41. Pediatr Nephrol. 2007 Jul;22(7):926-36 - PubMed
  42. Differentiation. 2012 Feb;83(2):S12-22 - PubMed
  43. Dev Cell. 2008 Dec;15(6):854-65 - PubMed
  44. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 - PubMed
  45. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6346-51 - PubMed
  46. Nature. 2013 Oct 10;502(7470):194-200 - PubMed
  47. J Orthod. 2008 Sep;35(3):156-60 - PubMed
  48. Biol Cell. 2011 Mar;103(3):131-44 - PubMed
  49. Mol Cell Proteomics. 2008 Jun;7(6):1031-42 - PubMed
  50. Proteins. 1995 Nov;23(3):318-26 - PubMed
  51. Nature. 2013 Oct 10;502(7470):254-7 - PubMed

Publication Types