Display options
Share it on

JMIR Res Protoc. 2014 Jul 08;3(3):e35. doi: 10.2196/resprot.3353.

The effects of propofol cardioplegia on blood and myocardial biomarkers of stress and injury in patients with isolated coronary artery bypass grafting or aortic valve replacement using cardiopulmonary bypass: protocol for a single-center randomized controlled trial.

JMIR research protocols

Zoe E Plummer, Sarah Baos, Chris A Rogers, M-Saadeh Suleiman, Alan J Bryan, Gianni D Angelini, James Hillier, Richard Downes, Eamonn Nicholson, Barnaby C Reeves

Affiliations

  1. Clinical Trials and Evaluation Unit, University of Bristol, Bristol, United Kingdom.

PMID: 25004932 PMCID: PMC4115261 DOI: 10.2196/resprot.3353

Abstract

BACKGROUND: Despite improved myocardial protection strategies, cardioplegic arrest and ischemia still result in reperfusion injury. We have previously published a study describing the effects of propofol (an anesthetic agent commonly used in cardiac surgery) on metabolic stress, cardiac function, and injury in a clinically relevant animal model. We concluded that cardioplegia supplementation with propofol at a concentration relevant to the human clinical setting resulted in improved hemodynamic function, reduced oxidative stress, and reduced reperfusion injury when compared to standard cardioplegia.

OBJECTIVE: The Propofol cardioplegia for Myocardial Protection Trial (ProMPT) aims to translate the successful animal intervention to the human clinical setting. We aim to test the hypothesis that supplementation of the cardioplegic solution with propofol will be cardioprotective for patients undergoing isolated coronary artery bypass graft or aortic valve replacement surgery with cardiopulmonary bypass.

METHODS: The trial is a single-center, placebo-controlled, randomized trial with blinding of participants, health care staff, and the research team. Patients aged between 18 and 80 years undergoing nonemergency isolated coronary artery bypass graft or aortic valve replacement surgery with cardiopulmonary bypass at the Bristol Heart Institute are being invited to participate. Participants are randomly assigned in a 1:1 ratio to either cardioplegia supplementation with propofol (intervention) or cardioplegia supplementation with intralipid (placebo) using a secure, concealed, Internet-based randomization system. Randomization is stratified by operation type and minimized by diabetes mellitus status. Biomarkers of cardiac injury and metabolism are being assessed to investigate any cardioprotection conferred. The primary outcome is myocardial injury, studied by measuring myocardial troponin T. The trial is designed to test hypotheses about the superiority of the intervention within each surgical stratum. The sample size of 96 participants has been chosen to achieve 80% power to detect standardized differences of 0.5 at a significance level of 5% (2-tailed) assuming equal numbers in each surgical stratum.

RESULTS: A total of 96 patients have been successfully recruited over a 2-year period. Results are to be published in late 2014.

CONCLUSIONS: Designing a practicable method for delivering a potentially protective dose of propofol to the heart during cardiac surgery was challenging. If our approach confirms the potential of propofol to reduce damage during cardiac surgery, we plan to design a larger multicenter trial to detect differences in clinical outcomes.

TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number (ISRCTN): 84968882; http://www.controlled-trials.com/ISRCTN84968882/ProMPT (Archived by WebCite at http://www.webcitation.org/6Qi8A51BS).

Keywords: anesthetics; aortic valve; cardiac surgery; cardioplegia; cardiopulmonary bypass; clinical trials, randomized; coronary artery; ischemia; reperfusion; troponin

References

  1. Ann Thorac Surg. 2000 Dec;70(6):2107-12 - PubMed
  2. Ann Thorac Surg. 2002 Aug;74(2):530-4; discussion 535 - PubMed
  3. Clin Pharmacokinet. 1989 Nov;17(5):308-26 - PubMed
  4. Anesth Analg. 2005 Nov;101(5):1275-1287 - PubMed
  5. Br J Pharmacol. 2008 Jan;153(1):21-33 - PubMed
  6. Anesth Analg. 1998 Feb;86(2):252-8 - PubMed
  7. Br J Anaesth. 1992 Jun;68(6):613-8 - PubMed
  8. Can J Physiol Pharmacol. 2003 Jan;81(1):14-21 - PubMed
  9. Toxicol Appl Pharmacol. 1994 Nov;129(1):163-9 - PubMed
  10. Can J Anaesth. 1999 Jul;46(7):641-8 - PubMed
  11. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1603-7 - PubMed
  12. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):79-94 - PubMed
  13. FEBS Lett. 1991 Feb 11;279(1):45-8 - PubMed
  14. Can J Anaesth. 2002 Oct;49(8):777-91 - PubMed
  15. Eur J Anaesthesiol. 1993 Jul;10(4):261-6 - PubMed
  16. Pharmacol Ther. 2001 Jan;89(1):29-46 - PubMed
  17. Anesth Analg. 1997 Oct;85(4):719-24 - PubMed
  18. Acta Anaesthesiol Scand. 1997 May;41(5):633-8 - PubMed
  19. Clin Oral Investig. 2003 Mar;7(1):2-7 - PubMed
  20. Biochem Pharmacol. 1992 Jul 22;44(2):391-3 - PubMed
  21. Ann Thorac Surg. 2003 Oct;76(4):1227-33; discussion 1233 - PubMed
  22. Heart. 2004 Dec;90(12):1460-6 - PubMed
  23. Anesthesiology. 1996 Nov;85(5):1092-9 - PubMed
  24. Eur J Cardiothorac Surg. 2002 Mar;21(3):440-6 - PubMed
  25. Ann Thorac Surg. 1994 Mar;57(3):648-51 - PubMed
  26. Anesth Analg. 2006 Sep;103(3):527-32 - PubMed
  27. Cardiovasc Res. 2000 Jan 14;45(2):360-9 - PubMed
  28. Anesth Analg. 2005 Mar;100(3):610-616 - PubMed
  29. J Card Fail. 2006 Mar;12(2):87-92 - PubMed
  30. Cardiovasc Res. 2003 Jul 1;59(1):113-21 - PubMed
  31. Biochim Biophys Acta. 2009 Nov;1787(11):1402-15 - PubMed
  32. Gen Thorac Cardiovasc Surg. 2013 Sep;61(9):485-96 - PubMed
  33. Circulation. 1997 Feb 18;95(4):787-9 - PubMed
  34. Anesthesiology. 2002 Jul;97(1):42-9 - PubMed
  35. Eur J Cardiothorac Surg. 1998 Nov;14(5):467-75 - PubMed
  36. FEBS Lett. 1995 Jul 10;368(1):101-4 - PubMed
  37. Anesthesiology. 1996 Jan;84(1):117-27 - PubMed
  38. Br J Anaesth. 2002 Aug;89(2):242-6 - PubMed
  39. Exp Biol Med (Maywood). 2005 Jun;230(6):413-20 - PubMed
  40. PLoS One. 2014 Jan 30;9(1):e87205 - PubMed
  41. Postgrad Med J. 1985;61 Suppl 3:45-50 - PubMed

Publication Types