Display options
Share it on

Ann Gen Psychiatry. 2014 Jun 13;13:17. doi: 10.1186/1744-859X-13-17. eCollection 2014.

Antidepressant treatment response is modulated by genetic and environmental factors and their interactions.

Annals of general psychiatry

Dávid Kovacs, Xénia Gonda, Péter Petschner, Andrea Edes, Nóra Eszlari, György Bagdy, Gabriella Juhasz

Affiliations

  1. Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary.
  2. Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary ; Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, 1125 Budapest, Hungary.
  3. Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary ; Neuroscience and Psychiatry Unit, School of Community Based Medicine, Faculty of Medical and Human Sciences, The University of Manchester, UK and Manchester Academic Health Sciences Centre, M13 9PT Manchester, UK.

PMID: 25053968 PMCID: PMC4106212 DOI: 10.1186/1744-859X-13-17

Abstract

Although there is a wide variety of antidepressants with different mechanisms of action available, the efficacy of treatment is not satisfactory. Genetic factors are presumed to play a role in differences in medication response; however, available evidence is controversial. Even genome-wide association studies failed to identify genes or regions which would consequently influence treatment response. We conducted a literature review in order to uncover possible mechanisms concealing the direct effects of genetic variants, focusing mainly on reports from large-scale studies including STAR*D or GENDEP. We observed that inclusion of environmental factors, gene-environment and gene-gene interactions in the model improves the probability of identifying genetic modulator effects of antidepressant response. It could be difficult to determine which allele of a polymorphism is the risk factor for poor treatment outcome because depending on the acting environmental factors different alleles could be advantageous to improve treatment response. Moreover, genetic variants tend to show better association with certain intermediate phenotypes linked to depression because these are more objective and detectable than traditional treatment outcomes. Thus, detailed modeling of environmental factors and their interactions with different genetic pathways could significantly improve our understanding of antidepressant efficacy. In addition, the complexity of depression itself demands a more comprehensive analysis of symptom trajectories if we are to extract useful information which could be used in the personalization of antidepressant treatment.

References

  1. J Affect Disord. 2010 Dec;127(1-3):337-42 - PubMed
  2. BMC Med. 2014 Jan 16;12:7 - PubMed
  3. Mol Psychiatry. 2009 Aug;14(8):746-54 - PubMed
  4. Pharmacogenet Genomics. 2012 Nov;22(11):765-76 - PubMed
  5. Eur Neuropsychopharmacol. 2009 Jan;19(1):64-7 - PubMed
  6. J Clin Psychopharmacol. 2011 Jun;31(3):345-8 - PubMed
  7. Trends Pharmacol Sci. 2011 May;32(5):270-80 - PubMed
  8. Biol Psychiatry. 2011 Apr 15;69(8):762-71 - PubMed
  9. CNS Neurosci Ther. 2008 Summer;14(2):153-64 - PubMed
  10. JAMA. 2010 Jan 6;303(1):47-53 - PubMed
  11. Pharmacogenomics J. 2009 Aug;9(4):225-33 - PubMed
  12. Brain Behav Immun. 2013 Jul;31:143-52 - PubMed
  13. J Psychopharmacol. 2012 Mar;26(3):349-59 - PubMed
  14. Science. 1996 Nov 29;274(5292):1527-31 - PubMed
  15. Eur Neuropsychopharmacol. 2012 Apr;22(4):239-58 - PubMed
  16. Arch Gen Psychiatry. 2009 Sep;66(9):966-975 - PubMed
  17. CNS Drugs. 2009 Aug;23(8):627-47 - PubMed
  18. J Psychiatr Res. 1998 Sep-Oct;32(5):255-9 - PubMed
  19. Neuropsychopharmacology. 2010 Apr;35(5):1083-9 - PubMed
  20. Acta Physiol (Oxf). 2012 May;205(1):41-60 - PubMed
  21. Mol Psychiatry. 2012 Mar;17(3):236-7 - PubMed
  22. Nat Rev Genet. 2004 Apr;5(4):251-61 - PubMed
  23. Mol Psychiatry. 2010 May;15(5):473-500 - PubMed
  24. Psychol Med. 2012 May;42(5):967-80 - PubMed
  25. Psychol Med. 2012 Oct;42(10):2027-35 - PubMed
  26. PLoS One. 2013 Jul 17;8(7):e68283 - PubMed
  27. Nat Rev Neurosci. 2006 Oct;7(10):818-27 - PubMed
  28. Nat Rev Genet. 2012 Jul 10;13(8):537-51 - PubMed
  29. Brain Res Bull. 2011 Nov 25;86(5-6):287-97 - PubMed
  30. PLoS One. 2012;7(4):e34451 - PubMed
  31. Psychoneuroendocrinology. 2011 Apr;36(3):426-36 - PubMed
  32. Arch Gen Psychiatry. 2005 Jun;62(6):617-27 - PubMed
  33. Psychopharmacology (Berl). 2013 Jun;227(3):509-19 - PubMed
  34. Mol Psychiatry. 2006 Mar;11(3):224-6 - PubMed
  35. J Neurosci. 2009 Feb 11;29(6):1855-9 - PubMed
  36. Biol Psychiatry. 2010 Jan 15;67(2):133-8 - PubMed
  37. Pharmacol Biochem Behav. 2014 Aug;123:55-76 - PubMed
  38. Soc Psychiatry Psychiatr Epidemiol. 2014 Jan;49(1):3-14 - PubMed
  39. Neuropsychopharmacol Hung. 2012 Dec;14(4):239-44 - PubMed
  40. Neuropsychopharmacology. 2011 Nov;36(12):2452-9 - PubMed
  41. Biol Psychiatry. 2010 Mar 1;67(5):446-57 - PubMed
  42. Psychiatr Danub. 2013 Sep;25(3):292-8 - PubMed
  43. Br J Psychiatry. 2011 Jun;198(6):424-7 - PubMed
  44. Neuropsychopharmacol Hung. 2012 Dec;14(4):213-20 - PubMed
  45. Psychol Med. 2010 Nov;40(11):1767-78 - PubMed
  46. J Psychopharmacol. 2012 Mar;26(3):360-7 - PubMed
  47. J Psychiatr Res. 2013 Sep;47(9):1157-65 - PubMed
  48. Am J Psychiatry. 2006 Jan;163(1):28-40 - PubMed
  49. J Affect Disord. 2013 Mar 20;146(1):91-9 - PubMed
  50. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 1):2375-97 - PubMed
  51. Pharmacogenomics J. 2011 Apr;11(2):138-45 - PubMed
  52. Am J Psychiatry. 2013 Feb;170(2):207-17 - PubMed
  53. Trends Neurosci. 2004 Oct;27(10):589-94 - PubMed
  54. Psychopharmacology (Berl). 2009 Aug;205(3):409-17 - PubMed
  55. Am J Psychiatry. 2012 Feb;169(2):141-51 - PubMed
  56. Neuropsychopharmacology. 2011 Sep;36(10):1982-91 - PubMed
  57. Am J Psychiatry. 2010 May;167(5):555-64 - PubMed
  58. Curr Opin Genet Dev. 2011 Jun;21(3):340-8 - PubMed
  59. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Aug 1;45:183-94 - PubMed
  60. Expert Opin Med Diagn. 2013 Sep;7(5):417-22 - PubMed
  61. Dev Neurobiol. 2010 Apr;70(5):289-97 - PubMed
  62. Depress Anxiety. 2013 Mar;30(3):185-9 - PubMed
  63. Am J Psychiatry. 2006 Nov;163(11):1905-17 - PubMed
  64. Pharmacol Biochem Behav. 1997 Jan;56(1):131-7 - PubMed
  65. Psychoneuroendocrinology. 2009 Jan;34(1):99-109 - PubMed
  66. Pharmacogenet Genomics. 2013 Mar;23(3):156-66 - PubMed
  67. Cell. 2003 Jan 24;112(2):257-69 - PubMed
  68. J Affect Disord. 2011 Sep;133(1-2):165-73 - PubMed
  69. Eur Neuropsychopharmacol. 2013 Jul;23(7):612-21 - PubMed
  70. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1666-73 - PubMed
  71. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jan 3;48:79-85 - PubMed

Publication Types