Display options
Share it on

Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11109-14. doi: 10.1073/pnas.1406763111. Epub 2014 Jul 14.

Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages.

Proceedings of the National Academy of Sciences of the United States of America

Alex Betts, Oliver Kaltz, Michael E Hochberg

Affiliations

  1. Institut des Sciences de l'Evolution, Université Montpellier II, Unité Mixte de Recherche 5554, 34095 Montpellier Cedex 05, France;Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom;
  2. Institut des Sciences de l'Evolution, Université Montpellier II, Unité Mixte de Recherche 5554, 34095 Montpellier Cedex 05, France;
  3. Institut des Sciences de l'Evolution, Université Montpellier II, Unité Mixte de Recherche 5554, 34095 Montpellier Cedex 05, France;Santa Fe Institute, Santa Fe, NM 87501; andWissenschaftskolleg zu Berlin, 14193 Berlin, Germany [email protected].

PMID: 25024215 PMCID: PMC4121802 DOI: 10.1073/pnas.1406763111

Abstract

Many antagonistic interactions between hosts and their parasites result in coevolution. Although coevolution can drive diversity and specificity within species, it is not known whether coevolutionary dynamics differ among functionally similar species. We present evidence of coevolution within simple communities of Pseudomonas aeruginosa PAO1 and a panel of bacteriophages. Pathogen identity affected coevolutionary dynamics. For five of six phages tested, time-shift assays revealed temporal peaks in bacterial resistance and phage infectivity, consistent with frequency-dependent selection (Red Queen dynamics). Two of the six phages also imposed additional directional selection, resulting in strongly increased resistance ranges over the entire length of the experiment (ca. 60 generations). Cross-resistance to these two phages was very high, independent of the coevolutionary history of the bacteria. We suggest that coevolutionary dynamics are associated with the nature of the receptor used by the phage for infection. Our results shed light on the coevolutionary process in simple communities and have practical application in the control of bacterial pathogens through the evolutionary training of phages, increasing their virulence and efficacy as therapeutics or disinfectants.

Keywords: arms race; fluctuating selection; nosocomial pathogen; phage therapy; type IV pili

References

  1. Mol Microbiol. 1998 Oct;30(2):295-304 - PubMed
  2. Mol Ecol. 2011 Mar;20(5):981-9 - PubMed
  3. Proc Biol Sci. 2005 Jul 7;272(1570):1385-91 - PubMed
  4. Proc Biol Sci. 2010 Jul 22;277(1691):2097-103 - PubMed
  5. Biol Lett. 2011 Apr 23;7(2):201-4 - PubMed
  6. Proc Biol Sci. 2002 May 7;269(1494):931-6 - PubMed
  7. J Gen Microbiol. 1972 Sep;72(2):303-19 - PubMed
  8. Drugs. 2007;67(3):351-68 - PubMed
  9. Appl Environ Microbiol. 2012 Aug;78(16):5646-52 - PubMed
  10. J Evol Biol. 2013 Aug;26(8):1836-40 - PubMed
  11. Proc Biol Sci. 2012 May 22;279(1735):1896-903 - PubMed
  12. Trends Ecol Evol. 2013 Jun;28(6):367-75 - PubMed
  13. Appl Environ Microbiol. 1998 Nov;64(11):4128-33 - PubMed
  14. Nat Genet. 2002 Dec;32(4):569-77 - PubMed
  15. Am J Respir Cell Mol Biol. 2013 Feb;48(2):150-6 - PubMed
  16. J Evol Biol. 2006 Mar;19(2):374-9 - PubMed
  17. Infect Genet Evol. 2007 Jul;7(4):547-52 - PubMed
  18. Nature. 2007 Dec 6;450(7171):870-3 - PubMed
  19. J Lab Clin Med. 1954 Aug;44(2):301-7 - PubMed
  20. J Evol Biol. 2008 Nov;21(6):1861-6 - PubMed
  21. Curr Biol. 2013 Jul 8;23(13):1256-60 - PubMed
  22. Proc Biol Sci. 2006 Jan 7;273(1582):45-9 - PubMed
  23. Science. 2012 Jan 27;335(6067):428-32 - PubMed
  24. Virology. 1971 Apr;44(1):1-17 - PubMed
  25. Ecol Lett. 2013 Dec;16(12):1455-62 - PubMed
  26. Annu Rev Microbiol. 2002;56:289-314 - PubMed
  27. Am Nat. 2011 Apr;177(4):440-51 - PubMed
  28. Ecol Lett. 2012 May;15(5):425-35 - PubMed
  29. Ecol Lett. 2011 Jul;14(7):635-42 - PubMed
  30. Am Nat. 2009 Feb;173(2):125-40 - PubMed
  31. Nature. 2010 Mar 11;464(7286):275-8 - PubMed
  32. Curr Pharm Biotechnol. 2010 Jan;11(1):69-86 - PubMed
  33. PLoS One. 2009;4(3):e4944 - PubMed
  34. Science. 2009 Feb 6;323(5915):741-6 - PubMed
  35. ISME J. 2010 Jun;4(6):739-51 - PubMed
  36. Ecol Lett. 2013 Jan;16(1):31-8 - PubMed
  37. Science. 2003 Mar 14;299(5613):1735-7 - PubMed
  38. Science. 2011 Apr 1;332(6025):106-9 - PubMed
  39. Evolution. 1999 Feb;53(1):292-295 - PubMed
  40. Trends Ecol Evol. 2007 Mar;22(3):120-6 - PubMed
  41. Trends Ecol Evol. 2009 Apr;24(4):226-32 - PubMed
  42. Ecol Lett. 2013 Jan;16(1):39-46 - PubMed
  43. Trends Microbiol. 2013 Feb;21(2):82-91 - PubMed
  44. J Bacteriol. 2006 Oct;188(19):6924-31 - PubMed
  45. Evolution. 2008 Jan;62(1):1-11 - PubMed
  46. Ann Rev Mar Sci. 2014;6:393-414 - PubMed
  47. Environ Microbiol. 2009 May;11(5):1303-13 - PubMed
  48. Nat Rev Genet. 2001 Jul;2(7):516-27 - PubMed
  49. FEMS Microbiol Rev. 2014 Sep;38(5):916-31 - PubMed
  50. Virology. 2010 Sep 15;405(1):26-30 - PubMed
  51. Proc Biol Sci. 2013 Aug 21;280(1769):20131747 - PubMed
  52. Proc Biol Sci. 2000 Nov 7;267(1458):2183-8 - PubMed
  53. Curr Biol. 2009 Sep 15;19(17):1438-41 - PubMed
  54. Evolution. 2009 Sep;63(9):2213-21 - PubMed
  55. Evol Appl. 2013 Nov;6(7):1054-63 - PubMed
  56. Biophys J. 2011 Apr 6;100(7):1608-16 - PubMed
  57. Nat Rev Microbiol. 2010 May;8(5):317-27 - PubMed
  58. Environ Microbiol. 2009 Nov;11(11):2874-83 - PubMed
  59. Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S81-7 - PubMed
  60. J Microbiol Methods. 2009 May;77(2):207-13 - PubMed
  61. Evolution. 2001 Jun;55(6):1136-45 - PubMed

Publication Types