Display options
Share it on

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10433-7. doi: 10.1073/pnas.1322828111. Epub 2014 Jul 09.

The magnetoelectrochemical switch.

Proceedings of the National Academy of Sciences of the United States of America

Petru Lunca Popa, Neil T Kemp, Hicham Majjad, Guillaume Dalmas, Vina Faramarzi, Christian Andreas, Riccardo Hertel, Bernard Doudin

Affiliations

  1. Département Science et Analyse des Matériaux, Centre de Recherche Public Gabriel Lippmann, L-4422 Belvaux, Luxembourg;
  2. Department of Physics, University of Hull, Kingston-upon-Hull HU6 7RX, United Kingdom;
  3. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) and Laboratory of Nanostructures in Interaction with their Environment (NIE), University of Strasbourg, UMR 7504 CNRS-UdS, 67034 Strasbourg, France; and.
  4. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) and Laboratory of Nanostructures in Interaction with their Environment (NIE), University of Strasbourg, UMR 7504 CNRS-UdS, 67034 Strasbourg, France; andPeter Grünberg Institut, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  5. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) and Laboratory of Nanostructures in Interaction with their Environment (NIE), University of Strasbourg, UMR 7504 CNRS-UdS, 67034 Strasbourg, France; and [email protected].

PMID: 25009179 PMCID: PMC4115516 DOI: 10.1073/pnas.1322828111

Abstract

In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 10(3). The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits.

Keywords: electrochemistry; magnetohydrodynamics; supramolecular chemistry

References

  1. J Phys Chem B. 2005 Jun 2;109(21):11065-73 - PubMed
  2. Science. 2001 Nov 16;294(5546):1488-95 - PubMed
  3. Nanotechnology. 2011 May 27;22(21):215302 - PubMed
  4. Nat Chem. 2012 Apr 22;4(6):485-90 - PubMed
  5. Science. 1985 Feb 22;227(4689):849-56 - PubMed
  6. Nature. 2004 Jul 15;430(6997):329-32 - PubMed
  7. Trends Biotechnol. 2004 Sep;22(9):455-62 - PubMed
  8. Nat Nanotechnol. 2008 Mar;3(3):139-43 - PubMed
  9. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8811-7 - PubMed
  10. Nano Lett. 2011 Feb 9;11(2):574-8 - PubMed
  11. Nat Nanotechnol. 2007 Mar;2(3):171-5 - PubMed
  12. Philos Trans A Math Phys Eng Sci. 2004 Dec 15;362(1825):2573-89 - PubMed
  13. Phys Rev Lett. 2011 Jul 8;107(2):024501 - PubMed
  14. Sci Rep. 2013;3:2574 - PubMed

Publication Types