Display options
Share it on

Front Microbiol. 2014 Jun 25;5:311. doi: 10.3389/fmicb.2014.00311. eCollection 2014.

A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates.

Frontiers in microbiology

Hui Wang, Jürgen Tomasch, Michael Jarek, Irene Wagner-Döbler

Affiliations

  1. Helmholtz-Centre for Infection Research Braunschweig, Germany.

PMID: 25009539 PMCID: PMC4069834 DOI: 10.3389/fmicb.2014.00311

Abstract

Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a "Jekyll and Hyde" lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1 ) which is part of the polyhydroxyalkanoate (PHA) metabolism operon represented approximately 10% of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT) that may be used for dimethylsulfoniopropionate (DMSP) uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis.

Keywords: DMSP; Roseobacter; dinoflagellates; polyhydroxyalkanoates; symbiosis; transcriptome; vitamin B 12

References

  1. Chembiochem. 2010 Feb 15;11(3):417-25 - PubMed
  2. Microbiol Mol Biol Rev. 2012 Sep;76(3):667-84 - PubMed
  3. Appl Environ Microbiol. 2000 Feb;66(2):578-87 - PubMed
  4. Genome Biol. 2012;13(3):R23 - PubMed
  5. Ann Rev Mar Sci. 2012;4:523-42 - PubMed
  6. Mar Drugs. 2013 Jun 17;11(6):2168-82 - PubMed
  7. Nat Rev Microbiol. 2007 Oct;5(10):792-800 - PubMed
  8. Appl Environ Microbiol. 2005 Oct;71(10):5665-77 - PubMed
  9. ISME J. 2013 Dec;7(12):2274-86 - PubMed
  10. Curr Opin Biotechnol. 2010 Jun;21(3):332-8 - PubMed
  11. J Bacteriol. 2011 Aug;193(15):4002-5 - PubMed
  12. Appl Environ Microbiol. 2004 Jun;70(6):3383-91 - PubMed
  13. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  14. Appl Environ Microbiol. 2003 Sep;69(9):5051-9 - PubMed
  15. Front Microbiol. 2013 Nov 12;4:336 - PubMed
  16. Environ Microbiol. 2001 Jun;3(6):380-96 - PubMed
  17. Environ Microbiol. 2006 Sep;8(9):1648-59 - PubMed
  18. Environ Microbiol. 2006 Oct;8(10):1688-702 - PubMed
  19. Environ Microbiol Rep. 2012 Feb;4(1):133-40 - PubMed
  20. J Bacteriol. 2004 Apr;186(8):2466-75 - PubMed
  21. Nat Chem. 2011 Apr;3(4):331-5 - PubMed
  22. Mol Microbiol. 2010 Oct;78(1):13-34 - PubMed
  23. ISME J. 2010 Jan;4(1):61-77 - PubMed
  24. Nature. 2008 Feb 7;451(7179):708-11 - PubMed
  25. Appl Environ Microbiol. 2005 Jul;71(7):3483-94 - PubMed
  26. Bioresour Technol. 2011 Apr;102(8):4945-53 - PubMed
  27. Appl Environ Microbiol. 2011 Nov;77(21):7445-50 - PubMed
  28. J Bacteriol. 1995 May;177(9):2425-35 - PubMed
  29. Bioinformatics. 2007 Oct 15;23(20):2700-7 - PubMed
  30. J Bacteriol. 2013 Feb;195(4):637-46 - PubMed
  31. PLoS One. 2011;6(6):e21032 - PubMed
  32. Science. 1998 Jul 10;281(5374):237-40 - PubMed
  33. J Bacteriol. 2001 Apr;183(7):2394-7 - PubMed
  34. Biomacromolecules. 2005 Mar-Apr;6(2):552-60 - PubMed
  35. Science. 2006 Oct 27;314(5799):649-52 - PubMed
  36. Appl Biochem Biotechnol. 2012 Jul;167(5):1092-106 - PubMed
  37. Environ Microbiol. 2010 Feb;12(2):327-43 - PubMed
  38. Biomacromolecules. 2007 Feb;8(2):657-62 - PubMed
  39. Appl Environ Microbiol. 2007 Apr;73(8):2440-50 - PubMed
  40. Beilstein J Org Chem. 2012;8:941-50 - PubMed
  41. Int J Syst Evol Microbiol. 2005 May;55(Pt 3):1089-1096 - PubMed
  42. Microbiol Rev. 1990 Dec;54(4):450-72 - PubMed
  43. mBio. 2013 Jul 09;4(4): - PubMed
  44. Appl Environ Microbiol. 2000 Oct;66(10):4237-46 - PubMed
  45. ISME J. 2011 Dec;5(12):1957-68 - PubMed

Publication Types