Display options
Share it on

Int J Mass Spectrom. 2013 Nov 15;354:312-317. doi: 10.1016/j.ijms.2013.06.028.

Increasing Confidence of LC-MS Identifications by Utilizing Ion Mobility Spectrometry.

International journal of mass spectrometry

Kevin L Crowell, Erin S Baker, Samuel H Payne, Yehia M Ibrahim, Matthew E Monroe, Gordon W Slysz, Brian L LaMarche, Vladislav A Petyuk, Paul D Piehowski, William F Danielson, Gordon A Anderson, Richard D Smith

Affiliations

  1. Pacific Northwest National Laboratory, Richland, WA 99352.

PMID: 25089116 PMCID: PMC4114398 DOI: 10.1016/j.ijms.2013.06.028

Abstract

Ion mobility spectrometry in conjunction with liquid chromatography separations and mass spectrometry offers a range of new possibilities for analyzing complex biological samples. To fully utilize the information obtained from these three measurement dimensions, informatics tools based on the accurate mass and time tag methodology were modified to incorporate ion mobility spectrometry drift times for peptides observed in human serum. In this work a reference human serum database was created for 12,139 peptides and populated with the monoisotopic mass, liquid chromatography normalized elution time, and ion mobility spectrometry drift time(s) for each. We demonstrate that the use of three dimensions for peak matching during the peptide identification process resulted in an increased numbers of identifications and a lower false discovery rate relative to only using the mass and normalized elution time dimensions.

Keywords: AMT tag; LC-IMS-MS; LC-MS; drift time; false discovery rate; ion mobility spectrometry; mass spectrometry; peptide identification

References

  1. J Am Soc Mass Spectrom. 2006 Sep;17(9):1299-305 - PubMed
  2. Anal Chem. 2006 Nov 15;78(22):7796-801 - PubMed
  3. Anal Chem. 2000 May 15;72(10):2247-55 - PubMed
  4. J Am Soc Mass Spectrom. 1998 Nov;9(11):1213-6 - PubMed
  5. Anal Chem. 2008 Jan 1;80(1):294-302 - PubMed
  6. Bioinformatics. 2010 Jul 1;26(13):1601-7 - PubMed
  7. J Proteome Res. 2007 Jul;6(7):2685-94 - PubMed
  8. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Dec 25;782(1-2):343-51 - PubMed
  9. Proteomics. 2013 Mar;13(5):766-70 - PubMed
  10. Bioinformatics. 2008 Apr 1;24(7):1021-3 - PubMed
  11. Mol Cell Proteomics. 2010 Dec;9(12):2840-52 - PubMed
  12. BMC Bioinformatics. 2009 Mar 17;10:87 - PubMed
  13. Proteomics. 2002 May;2(5):513-23 - PubMed
  14. Anal Chem. 2011 Aug 15;83(16):6135-40 - PubMed
  15. Anal Chem. 2007 Oct 15;79(20):7845-52 - PubMed
  16. Anal Chem. 2008 Feb 1;80(3):612-23 - PubMed
  17. Mol Cell Proteomics. 2010 Mar;9(3):486-96 - PubMed
  18. Anal Chem. 2007 Mar 15;79(6):2451-62 - PubMed
  19. J Am Soc Mass Spectrom. 2007 Jul;18(7):1176-87 - PubMed
  20. Bioinformatics. 2007 Aug 1;23(15):2021-3 - PubMed
  21. J Proteome Res. 2011 May 6;10(5):2318-29 - PubMed
  22. Anal Chem. 2001 Apr 15;73(8):1766-75 - PubMed
  23. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Dec 25;782(1-2):385-92 - PubMed
  24. Anal Chem. 2000 Jul 15;72(14):3349-54 - PubMed
  25. BMC Bioinformatics. 2010 Apr 11;11:182 - PubMed
  26. Nature. 2011 May 19;473(7347):337-42 - PubMed
  27. Anal Chem. 2001 Jan 15;73(2):177-84 - PubMed

Publication Types

Grant support