Display options
Share it on

Alzheimers Res Ther. 2014 Mar 24;6(2):16. doi: 10.1186/alzrt246. eCollection 2014.

Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease.

Alzheimer's research & therapy

Lars Lannfelt, Christer Möller, Hans Basun, Gunilla Osswald, Dag Sehlin, Andrew Satlin, Veronika Logovinsky, Pär Gellerfors

Affiliations

  1. Department of Public Health/Geriatrics, Uppsala University, Dag Hammarskölds väg 14 B, 751 85 Uppsala, Sweden ; BioArctic Neuroscience AB, Warfvinges väg 35, 112 51 Stockholm, Sweden.
  2. BioArctic Neuroscience AB, Warfvinges väg 35, 112 51 Stockholm, Sweden.
  3. Department of Public Health/Geriatrics, Uppsala University, Dag Hammarskölds väg 14 B, 751 85 Uppsala, Sweden.
  4. Eisai, Inc, 100 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.

PMID: 25031633 PMCID: PMC4054967 DOI: 10.1186/alzrt246

Abstract

The symptomatic drugs currently on the market for Alzheimer's disease (AD) have no effect on disease progression, and this creates a large unmet medical need. The type of drug that has developed most rapidly in the last decade is immunotherapy: vaccines and, especially, passive vaccination with monoclonal antibodies. Antibodies are attractive drugs as they can be made highly specific for their target and often with few side effects. Data from recent clinical AD trials indicate that a treatment effect by immunotherapy is possible, providing hope for a new generation of drugs. The first anti-amyloid-beta (anti-Aβ) vaccine developed by Elan, AN1792, was halted in phase 2 because of aseptic meningoencephalitis. However, in a follow-up study, patients with antibody response to the vaccine demonstrated reduced cognitive decline, supporting the hypothesis that Aβ immunotherapy may have clinically relevant effects. Bapineuzumab (Elan/Pfizer Inc./Johnson & Johnson), a monoclonal antibody targeting fibrillar Aβ, was stopped because the desired clinical effect was not seen. Solanezumab (Eli Lilly and Company) was developed to target soluble, monomeric Aβ. In two phase 3 studies, Solanezumab did not meet primary endpoints. When data from the two studies were pooled, a positive pattern emerged, revealing a significant slowing of cognitive decline in the subgroup of mild AD. The Arctic mutation has been shown to specifically increase the formation of soluble Aβ protofibrils, an Aβ species shown to be toxic to neurons and likely to be present in all cases of AD. A monoclonal antibody, mAb158, was developed to target Aβ protofibrils with high selectivity. It has at least a 1,000-fold higher selectivity for protofibrils as compared with monomers of Aβ, thus targeting the toxic species of the peptide. A humanized version of mAb158, BAN2401, has now entered a clinical phase 2b trial in a collaboration between BioArctic Neuroscience and Eisai without the safety concerns seen in previous phase 1 and 2a trials. Experiences from the field indicate the importance of initiating treatment early in the course of the disease and of enriching the trial population by improving the diagnostic accuracy. BAN2401 is a promising candidate for Aβ immunotherapy in early AD. Other encouraging efforts in immunotherapy as well as in the small-molecule field offer hope for new innovative therapies for AD in the future.

References

  1. Neurology. 2005 May 10;64(9):1553-62 - PubMed
  2. Nat Neurosci. 2001 Sep;4(9):887-93 - PubMed
  3. J Neurochem. 2007 Oct;103(1):334-45 - PubMed
  4. Med Clin North Am. 2013 May;97(3):369-76 - PubMed
  5. Neurobiol Aging. 2006 Jan;27(1):67-77 - PubMed
  6. Neurobiol Dis. 2009 Dec;36(3):425-34 - PubMed
  7. J Biol Chem. 2012 Nov 30;287(49):41245-57 - PubMed
  8. Acta Psychiatr Scand. 2009 Apr;119(4):252-65 - PubMed
  9. J Biol Chem. 1997 Aug 29;272(35):22364-72 - PubMed
  10. Ann Neurol. 1999 Dec;46(6):860-6 - PubMed
  11. Neurology. 2009 Sep 8;73(10):754-60 - PubMed
  12. Ann Neurol. 1991 Oct;30(4):572-80 - PubMed
  13. Nature. 1991 Oct 31;353(6347):844-6 - PubMed
  14. Arch Med Sci. 2011 Feb;7(1):102-11 - PubMed
  15. Ann Med. 2008;40(8):562-83 - PubMed
  16. J Neurochem. 2007 May;101(3):854-62 - PubMed
  17. N Engl J Med. 2013 Jul 25;369(4):341-50 - PubMed
  18. ACS Chem Neurosci. 2012 Apr 18;3(4):302-11 - PubMed
  19. Nature. 2012 Aug 2;488(7409):96-9 - PubMed
  20. Lancet Neurol. 2012 Jul;11(7):597-604 - PubMed
  21. Nature. 1992 Dec 17;360(6405):672-4 - PubMed
  22. PLoS One. 2012;7(2):e32014 - PubMed
  23. Science. 2002 Jul 19;297(5580):353-6 - PubMed
  24. Lancet Neurol. 2013 Feb;12(2):207-16 - PubMed
  25. FEBS J. 2006 Jun;273(12):2618-30 - PubMed
  26. Nat Med. 2003 Apr;9(4):448-52 - PubMed
  27. N Engl J Med. 1986 Apr 10;314(15):964-73 - PubMed
  28. Brain Pathol. 2005 Jan;15(1):84-7 - PubMed
  29. Neurobiol Aging. 1995 May-Jun;16(3):285-98; discussion 298-304 - PubMed
  30. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1131-5 - PubMed
  31. Nat Genet. 1992 Aug;1(5):345-7 - PubMed
  32. Nature. 2006 Mar 16;440(7082):352-7 - PubMed
  33. JAMA. 2000 Mar 22-29;283(12):1571-7 - PubMed
  34. Nat Med. 1996 Aug;2(8):864-70 - PubMed
  35. J Neurosci. 1999 Oct 15;19(20):8876-84 - PubMed
  36. Neurology. 2012 Jul 17;79(3):229-36 - PubMed
  37. Lancet Neurol. 2010 Jan;9(1):119-28 - PubMed
  38. J Neurosci. 2010 Oct 27;30(43):14411-9 - PubMed
  39. Science. 2010 Dec 24;330(6012):1774 - PubMed
  40. Neurology. 2011 Sep 27;77(13):1253-62 - PubMed
  41. Alzheimers Dement. 2012 Jul;8(4):261-71 - PubMed
  42. Arch Neurol. 2012 Aug;69(8):1002-10 - PubMed
  43. Neurobiol Aging. 2007 Sep;28(9):1297-306 - PubMed
  44. Lancet Neurol. 2010 Apr;9(4):363-72 - PubMed
  45. Curr Alzheimer Res. 2009 Apr;6(2):144-51 - PubMed
  46. Int J Biochem Cell Biol. 2010 Dec;42(12):1915-8 - PubMed
  47. N Engl J Med. 2014 Jan 23;370(4):322-33 - PubMed
  48. Brain Res. 1991 Nov 1;563(1-2):311-4 - PubMed
  49. Drugs R D. 2006;7(2):87-97 - PubMed
  50. FEBS J. 2009 Feb;276(4):995-1006 - PubMed
  51. Neurobiol Aging. 1992 Sep-Oct;13(5):609-12 - PubMed

Publication Types