Display options
Share it on

J Genomics. 2013 Oct 15;1:5-12. doi: 10.7150/jgen.3769. eCollection 2013.

Cellular and molecular implications of mature adipocyte dedifferentiation.

Journal of genomics

Shengjuan Wei, Marcio S Duarte, Linsen Zan, Min Du, Zhihua Jiang, LeLuo Guan, Jie Chen, Gary J Hausman, Michael V Dodson

Affiliations

  1. 1. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China. ; 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
  2. 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA. ; 3. Department of Animal Sciences, Federal University of Viçosa, Viçosa, MG 3670-000, Brazil.
  3. 1. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
  4. 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
  5. 4. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
  6. 5. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
  7. 6. United States Department of Agriculture, Agriculture Research Services, Athens, GA 30605, USA.

PMID: 25031650 PMCID: PMC4091435 DOI: 10.7150/jgen.3769

Abstract

There is a voluminous amount of scientific literature dealing with the involvement of adipocytes in molecular regulation of carcass composition, obesity, metabolic syndrome, or diabetes. To form adipocytes (process termed adipogenesis) nearly all scientific papers refer to the use of preadipocytes, adipofibroblasts, stromal vascular cells or adipogenic cell lines, and their differentiation to form lipid-assimilating cells containing storage triacylglyceride. However, mature adipocytes, themselves, possess ability to undergo dedifferentiation, form proliferative-competent progeny cells (the exact plasticity is unknown) and reinitiate formation of cells capable of lipid metabolism and storage. The progeny cells would make a viable (and alternative) cell system for the evaluation of cell ability to reestablish lipid assimilation, ability to differentially express genes (as compared to other adipogenic cells), and to form other types of cells (multi-lineage potential). Understanding the dedifferentiation process itself and/or dedifferentiated fat cells could contribute to our knowledge of normal growth processes, or to disease function. Indeed, the ability of progeny cells to form other cell types could turn-out to be important for processes of tissue reconstruction/engineering and may have implications in clinical, biochemical or molecular processes.

Keywords: dedifferentiation; mature adipocytes; review.

References

  1. J Tissue Eng Regen Med. 2009 Oct;3(7):553-61 - PubMed
  2. Yale J Biol Med. 1975 Mar;48(1):9-16 - PubMed
  3. Biochem Biophys Res Commun. 2004 Sep 3;321(4):967-74 - PubMed
  4. In Vitro Cell Dev Biol Anim. 1996 Oct;32(9):564-72 - PubMed
  5. J Nutr. 2000 Dec;130(12):3122S-3126S - PubMed
  6. Circulation. 2004 Jul 20;110(3):349-55 - PubMed
  7. Biochem Biophys Res Commun. 2008 Feb 1;366(1):54-9 - PubMed
  8. J Urol. 2009 Jul;182(1):355-65 - PubMed
  9. Int J Stem Cells. 2011 Jun;4(1):76-8 - PubMed
  10. Ann Plast Surg. 2005 Jun;54(6):651-6 - PubMed
  11. Exp Biol Med (Maywood). 2010 Oct;235(10):1185-93 - PubMed
  12. J Lipids. 2011;2011:721686 - PubMed
  13. Stroke. 2009 May;40(5):1886-91 - PubMed
  14. Stem Cells. 2005 Mar;23(3):412-23 - PubMed
  15. Cell Struct Funct. 2008;33(2):211-22 - PubMed
  16. Cytotechnology. 2004 Oct;46(2-3):163-72 - PubMed
  17. In Vitro. 1975 Jan-Feb;11(1):50-4 - PubMed
  18. Prog Lipid Res. 2001 Nov;40(6):439-52 - PubMed
  19. J Lipid Res. 1987 Sep;28(9):1038-45 - PubMed
  20. Cell Tissue Res. 2008 Jun;332(3):435-46 - PubMed
  21. Cell Prolif. 2008 Jun;41(3):441-59 - PubMed
  22. Domest Anim Endocrinol. 2004 Nov;27(4):303-31 - PubMed
  23. Int J Biol Sci. 2010 Jan 21;6(1):80-8 - PubMed
  24. Biochem Biophys Res Commun. 2011 Apr 15;407(3):562-7 - PubMed
  25. J Anim Sci. 2009 Apr;87(4):1218-46 - PubMed
  26. Stem Cells. 2007 Apr;25(4):818-27 - PubMed
  27. Blood. 2000 May 15;95(10):3106-12 - PubMed
  28. J Cell Physiol. 2008 Apr;215(1):210-22 - PubMed
  29. Tissue Cell. 2005 Aug;37(4):335-8 - PubMed
  30. J Lipid Res. 1989 Dec;30(12):1987-95 - PubMed
  31. Cells Tissues Organs. 2006;182(3-4):226-8 - PubMed
  32. J Endocrinol. 2000 Feb;164(2):119-28 - PubMed
  33. Tissue Cell. 2008 Aug;40(4):307-8 - PubMed
  34. Fed Proc. 1976 Sep;35(11):2302-7 - PubMed
  35. Int J Stem Cells. 2009 May;2(1):76-9 - PubMed
  36. Circ Res. 2004 Aug 20;95(4):343-53 - PubMed
  37. J Cardiovasc Transl Res. 2011 Apr;4(2):200-10 - PubMed
  38. Cell Struct Funct. 1999 Apr;24(2):89-100 - PubMed
  39. Cells Tissues Organs. 2008;188(4):359-72 - PubMed
  40. Biochem Biophys Res Commun. 2008 Dec 19;377(3):780-5 - PubMed
  41. Cell Mol Biol Lett. 2011 Jun;16(2):236-57 - PubMed
  42. Int J Oral Sci. 2011 Jul;3(3):117-24 - PubMed
  43. J Cell Physiol. 2001 Oct;189(1):54-63 - PubMed
  44. J Food Sci. 2010 Jan-Feb;75(1):R1-8 - PubMed
  45. J Mol Cell Cardiol. 2009 Nov;47(5):565-75 - PubMed

Publication Types