Display options
Share it on

J Chem Theory Comput. 2012 Dec 11;8(12):4863-4875. doi: 10.1021/ct3006437.

Computationally Efficient Multiconfigurational Reactive Molecular Dynamics.

Journal of chemical theory and computation

Takefumi Yamashita, Yuxing Peng, Chris Knight, Gregory A Voth

Affiliations

  1. Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Tokyo, Japan.
  2. Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 6063.
  3. Computing, Environment, and Life Sciences, Argonne National Laboratory, Argonne, IL 60439.
  4. Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 6063 ; Computing, Environment, and Life Sciences, Argonne National Laboratory, Argonne, IL 60439.

PMID: 25100924 PMCID: PMC4120847 DOI: 10.1021/ct3006437

Abstract

It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as "multistate". These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations.

Keywords: coarse-graining; effective long-range interaction; multiple-program parallelization; reactive molecular dynamics

References

  1. J Phys Chem B. 2009 Apr 2;113(13):4017-30 - PubMed
  2. J Chem Theory Comput. 2008 Mar;4(3):435-47 - PubMed
  3. Biophys J. 2002 Mar;82(3):1460-8 - PubMed
  4. J Chem Phys. 2012 Dec 14;137(22):22A525 - PubMed
  5. Biophys J. 2007 Jan 1;92(1):46-60 - PubMed
  6. J Chem Phys. 2005 Apr 8;122(14):144105 - PubMed
  7. J Phys Chem B. 2011 May 19;115(19):5903-12 - PubMed
  8. Angew Chem Int Ed Engl. 2009;48(7):1198-229 - PubMed
  9. J Am Chem Soc. 2008 Mar 12;130(10):3120-6 - PubMed
  10. J Phys Chem B. 2008 Apr 17;112(15):4711-24 - PubMed
  11. J Chem Phys. 2008 Jul 14;129(2):024706 - PubMed
  12. J Chem Phys. 2008 Jul 14;129(2):024105 - PubMed
  13. Acc Chem Res. 2012 Jan 17;45(1):101-9 - PubMed
  14. J Phys Chem B. 2010 Jan 14;114(1):333-9 - PubMed
  15. J Chem Phys. 2012 May 21;136(19):194503 - PubMed
  16. J Phys Chem A. 2009 Jun 4;113(22):6356-64 - PubMed
  17. Biophys J. 2006 May 15;90(10):L73-5 - PubMed
  18. Nat Struct Mol Biol. 2010 Jul;17(7):869-875 - PubMed
  19. Phys Chem Chem Phys. 2012 Jan 14;14(2):646-56 - PubMed
  20. J Phys Chem B. 2008 Jan 17;112(2):467-82 - PubMed
  21. J Mol Biol. 2011 Apr 8;407(4):607-20 - PubMed
  22. Biophys J. 2005 May;88(5):3095-108 - PubMed
  23. J Chem Theory Comput. 2010 Oct 12;6(10):3039-47 - PubMed
  24. J Phys Chem B. 2006 Sep 21;110(37):18594-600 - PubMed
  25. J Chem Theory Comput. 2010 Oct 12;6(10):3223-32 - PubMed
  26. J Phys Chem Lett. 2011 Jan 20;2(2):81-6 - PubMed
  27. J Phys Chem B. 2007 May 3;111(17):4300-14 - PubMed
  28. J Phys Chem B. 2009 Feb 5;113(5):1253-72 - PubMed
  29. J Am Chem Soc. 2012 Jan 18;134(2):1147-52 - PubMed
  30. J Phys Chem A. 2006 Jan 19;110(2):631-9 - PubMed
  31. J Phys Chem B. 2012 Jan 12;116(1):343-52 - PubMed
  32. Phys Chem Chem Phys. 2009 Nov 7;11(41):9420-30 - PubMed
  33. J Chem Theory Comput. 2008 May;4(5):790-803 - PubMed
  34. J Chem Phys. 2012 Apr 21;136(15):154507 - PubMed
  35. J Phys Chem B. 2010 Jul 29;114(29):9555-62 - PubMed
  36. J Phys Chem B. 2010 Jan 14;114(1):592-603 - PubMed
  37. J Phys Chem B. 2008 Aug 7;112(31):9456-66 - PubMed
  38. Acc Chem Res. 2006 Feb;39(2):143-50 - PubMed
  39. J Chem Phys. 2006 Jun 21;124(23):234104 - PubMed
  40. Biochemistry. 2012 Feb 14;51(6):1092-100 - PubMed
  41. Biophys J. 2007 Nov 15;93(10):3470-9 - PubMed
  42. J Phys Chem B. 2008 Dec 18;112(50):16230-7 - PubMed
  43. Top Curr Chem. 2012;307:109-53 - PubMed

Publication Types

Grant support