Display options
Share it on

Front Neurosci. 2014 Jul 21;8:198. doi: 10.3389/fnins.2014.00198. eCollection 2014.

Merging functional and structural properties of the monkey auditory cortex.

Frontiers in neuroscience

Olivier Joly, Simon Baumann, Fabien Balezeau, Alexander Thiele, Timothy D Griffiths

Affiliations

  1. Auditory Group, Institute of Neuroscience, Newcastle University Newcastle Upon Tyne, UK.

PMID: 25100930 PMCID: PMC4104553 DOI: 10.3389/fnins.2014.00198

Abstract

Recent neuroimaging studies in primates aim to define the functional properties of auditory cortical areas, especially areas beyond A1, in order to further our understanding of the auditory cortical organization. Precise mapping of functional magnetic resonance imaging (fMRI) results and interpretation of their localizations among all the small auditory subfields remains challenging. To facilitate this mapping, we combined here information from cortical folding, micro-anatomy, surface-based atlas and tonotopic mapping. We used for the first time, phase-encoded fMRI design for mapping the monkey tonotopic organization. From posterior to anterior, we found a high-low-high progression of frequency preference on the superior temporal plane. We show a faithful representation of the fMRI results on a locally flattened surface of the superior temporal plane. In a tentative scheme to delineate core versus belt regions which share similar tonotopic organizations we used the ratio of T1-weighted and T2-weighted MR images as a measure of cortical myelination. Our results, presented along a co-registered surface-based atlas, can be interpreted in terms of a current model of the monkey auditory cortex.

Keywords: auditory cortex; cortical surface; monkey; phase-encoded design; tonotopy

References

  1. J Neurophysiol. 2004 Mar;91(3):1282-96 - PubMed
  2. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18168-73 - PubMed
  3. Science. 1995 May 12;268(5212):889-93 - PubMed
  4. PLoS Biol. 2006 Jul;4(7):e215 - PubMed
  5. Front Syst Neurosci. 2013 Apr 30;7:11 - PubMed
  6. J Neurosci. 2009 May 27;29(21):7031-9 - PubMed
  7. J Neurosci. 2011 Aug 10;31(32):11597-616 - PubMed
  8. Neuroimage. 2010 Jan 1;49(1):150-7 - PubMed
  9. Cereb Cortex. 2011 Jun;21(6):1254-72 - PubMed
  10. J Neurosci. 2012 Oct 10;32(41):14205-16 - PubMed
  11. Neuroimage. 2012 Sep;62(3):1376-89 - PubMed
  12. Hear Res. 2011 Jan;271(1-2):133-46 - PubMed
  13. J Comp Neurol. 2001 Dec 17;441(3):197-222 - PubMed
  14. Audiol Neurootol. 1998 Mar-Jun;3(2-3):73-85 - PubMed
  15. J Neurosci. 2012 Nov 14;32(46):16095-105 - PubMed
  16. J Comp Neurol. 1998 May 18;394(4):475-95 - PubMed
  17. J Am Med Inform Assoc. 2001 Sep-Oct;8(5):443-59 - PubMed
  18. Front Neurosci. 2013 Jun 10;7:95 - PubMed
  19. Neuroimage. 2006 Oct 1;32(4):1524-37 - PubMed
  20. J Neurosci Methods. 2007 May 15;162(1-2):8-13 - PubMed
  21. J Neurosci. 2011 Oct 5;31(40):14067-75 - PubMed
  22. J Comp Neurol. 1995 Nov 13;362(2):153-70 - PubMed
  23. Neuroimage. 2013 Jan 15;65:1-12 - PubMed
  24. J Neurophysiol. 2014 Apr;111(8):1671-85 - PubMed
  25. Magn Reson Med. 1993 Jun;29(6):804-11 - PubMed
  26. J Neurosci Methods. 2006 Dec 15;158(2):207-11 - PubMed
  27. Neuroimage. 2010 Apr 15;50(3):1099-108 - PubMed
  28. Neuroimage. 2001 Apr;13(4):684-701 - PubMed
  29. J Neurophysiol. 2004 Jun;91(6):2578-89 - PubMed
  30. Brain Res. 1973 Feb 28;50(2):275-96 - PubMed
  31. Cereb Cortex. 2012 Apr;22(4):838-53 - PubMed
  32. Neuroimage. 2009 Aug 1;47(1):262-72 - PubMed
  33. Cereb Cortex. 2012 Sep;22(9):2024-38 - PubMed
  34. Neuroimage. 2012 Aug 15;62(2):1195-200 - PubMed
  35. PLoS One. 2011 Mar 23;6(3):e17832 - PubMed
  36. Neuroimage. 2006 Jul 1;31(3):1116-28 - PubMed
  37. Nat Neurosci. 2008 Mar;11(3):367-74 - PubMed
  38. J Comp Neurol. 1993 Sep 15;335(3):437-59 - PubMed
  39. Hear Res. 2000 Dec;150(1-2):104-18 - PubMed

Publication Types

Grant support