Display options
Share it on

Front Hum Neurosci. 2014 Jul 22;8:524. doi: 10.3389/fnhum.2014.00524. eCollection 2014.

Frequency-dependent auditory space representation in the human planum temporale.

Frontiers in human neuroscience

Talia Shrem, Leon Y Deouell

Affiliations

  1. Human Cognitive Neuroscience Lab, Department of Psychology, Social Sciences Faculty, The Hebrew University of Jerusalem Jerusalem, Israel.
  2. Human Cognitive Neuroscience Lab, Department of Psychology, Social Sciences Faculty, The Hebrew University of Jerusalem Jerusalem, Israel ; Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem Jerusalem, Israel.

PMID: 25100973 PMCID: PMC4106454 DOI: 10.3389/fnhum.2014.00524

Abstract

Functional magnetic resonance imaging (fMRI) findings suggest that a part of the planum temporale (PT) is involved in representing spatial properties of acoustic information. Here, we tested whether this representation of space is frequency-dependent or generalizes across spectral content, as required from high order sensory representations. Using sounds with two different spectral content and two spatial locations in individually tailored virtual acoustic environment, we compared three conditions in a sparse-fMRI experiment: Single Location, in which two sounds were both presented from one location; Fixed Mapping, in which there was one-to-one mapping between two sounds and two locations; and Mixed Mapping, in which the two sounds were equally likely to appear at either one of the two locations. We surmised that only neurons tuned to both location and frequency should be differentially adapted by the Mixed and Fixed mappings. Replicating our previous findings, we found adaptation to spatial location in the PT. Importantly, activation was higher for Mixed Mapping than for Fixed Mapping blocks, even though the two sounds and the two locations appeared equally in both conditions. These results show that spatially tuned neurons in the human PT are not invariant to the spectral content of sounds.

Keywords: adaptation; fMRI; sound location; sparse imaging; tonotopy

References

  1. Neuropsychologia. 2011 Jul;49(9):2794-7 - PubMed
  2. Curr Biol. 2004 Sep 7;14(17):1559-64 - PubMed
  3. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6 - PubMed
  4. Audiol Neurootol. 2001 Jul-Aug;6(4):178-81 - PubMed
  5. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):869-75 - PubMed
  6. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5931-5 - PubMed
  7. Biomed Res Int. 2013;2013:475427 - PubMed
  8. J Comp Neurol. 1997 Sep 22;386(2):304-16 - PubMed
  9. Neuroscientist. 2002 Feb;8(1):73-83 - PubMed
  10. Cereb Cortex. 2005 Mar;15(3):317-24 - PubMed
  11. Nat Neurosci. 2002 Sep;5(9):905-9 - PubMed
  12. Nat Neurosci. 1999 Dec;2(12):1131-6 - PubMed
  13. Neuroimage. 2011 Feb 1;54(3):1803-11 - PubMed
  14. Magn Reson Med. 1995 May;33(5):636-47 - PubMed
  15. PLoS Biol. 2006 Jul;4(7):e215 - PubMed
  16. Cereb Cortex. 2011 Mar;21(3):698-707 - PubMed
  17. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11829-35 - PubMed
  18. PLoS Comput Biol. 2011 Mar;7(3):e1002013 - PubMed
  19. Hum Brain Mapp. 1999;7(3):213-23 - PubMed
  20. PLoS One. 2013 May 14;8(5):e64259 - PubMed
  21. Acta Psychol (Amst). 2003 Jul;113(3):315-27 - PubMed
  22. Neuron. 2005 Sep 15;47(6):893-905 - PubMed
  23. Neuroimage. 2008 May 15;41(1):69-79 - PubMed
  24. Curr Biol. 2002 Sep 17;12(18):1584-90 - PubMed
  25. Hear Res. 2012 Sep;291(1-2):52-6 - PubMed
  26. J Neurosci. 2003 Jul 2;23(13):5799-804 - PubMed
  27. J Neurosci. 2012 Sep 26;32(39):13501-9 - PubMed
  28. Neuroimage. 2002 Jan;15(1):273-89 - PubMed
  29. Acta Psychol (Amst). 2001 Apr;107(1-3):293-321 - PubMed
  30. J Neurophysiol. 2006 Dec;96(6):3323-37 - PubMed
  31. Trends Neurosci. 2002 Jul;25(7):348-53 - PubMed
  32. Audiol Neurootol. 1998 Mar-Jun;3(2-3):86-103 - PubMed
  33. Neuroimage. 1997 Nov;6(4):288-304 - PubMed
  34. Psychophysiology. 1995 Jan;32(1):55-65 - PubMed
  35. Neuroimage. 2010 Apr 15;50(3):1202-11 - PubMed
  36. Hum Brain Mapp. 2005 Dec;26(4):251-61 - PubMed
  37. Eur J Neurosci. 2006 Sep;24(5):1488-94 - PubMed
  38. PLoS One. 2012;7(7):e41872 - PubMed
  39. Atten Percept Psychophys. 2013 Jul;75(5):790-811 - PubMed
  40. J Neurophysiol. 2014 Apr;111(8):1671-85 - PubMed
  41. Hear Res. 2007 Feb;224(1-2):93-100 - PubMed
  42. Trends Neurosci. 2006 May;29(5):250-6 - PubMed
  43. PLoS One. 2013;8(1):e52942 - PubMed
  44. Neuron. 2007 Sep 20;55(6):985-96 - PubMed
  45. J Neurophysiol. 2004 Jun;91(6):2578-89 - PubMed
  46. Hear Res. 2005 Apr;202(1-2):188-99 - PubMed
  47. Vision Res. 2011 Apr 13;51(7):718-37 - PubMed
  48. Neuroreport. 2006 Nov 6;17(16):1659-62 - PubMed
  49. J Neurophysiol. 2003 Jun;89(6):2889-903 - PubMed
  50. Neuroimage. 2001 Oct;14(4):802-16 - PubMed
  51. Nature. 1999 Aug 19;400(6746):724-6 - PubMed
  52. Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12301-6 - PubMed
  53. J Neurosci. 2004 Dec 15;24(50):11307-16 - PubMed
  54. Exp Brain Res. 2002 Nov;147(1):8-15 - PubMed
  55. J Neurosci. 2009 Oct 14;29(41):13074-8 - PubMed
  56. Trends Cogn Sci. 2006 Jan;10(1):14-23 - PubMed
  57. Neuroreport. 2004 Jun 28;15(9):1523-6 - PubMed
  58. PLoS One. 2011 Mar 23;6(3):e17832 - PubMed
  59. Nat Neurosci. 2013 Dec;16(12):1840-7 - PubMed
  60. Neuroimage. 2006 Aug 15;32(2):968-77 - PubMed
  61. Acta Psychol (Amst). 2005 Jan-Feb;118(1-2):93-100 - PubMed
  62. Science. 2001 Apr 13;292(5515):290-3 - PubMed
  63. J Neurosci. 2013 Jul 3;33(27):10986-1001 - PubMed
  64. Learn Mem. 2002 Sep-Oct;9(5):268-78 - PubMed
  65. PLoS One. 2011;6(9):e25031 - PubMed
  66. PLoS One. 2011;6(9):e25146 - PubMed
  67. Neuroimage. 2013 Jun;73:40-9 - PubMed
  68. Hear Res. 2000 Dec;150(1-2):104-18 - PubMed
  69. Neuropsychologia. 2008 Mar 7;46(4):958-66 - PubMed

Publication Types