Display options
Share it on

Front Neuroeng. 2014 Jul 21;7:24. doi: 10.3389/fneng.2014.00024. eCollection 2014.

Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.

Frontiers in neuroengineering

Eduardo Fernández, Bradley Greger, Paul A House, Ignacio Aranda, Carlos Botella, Julio Albisua, Cristina Soto-Sánchez, Arantxa Alfaro, Richard A Normann

Affiliations

  1. Bioengineering Institute, Miguel Hernández University of Elche Elche, Spain ; CIBER-BBN Zaragoza, Spain.
  2. School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA.
  3. Department of Neurosurgery, University of Utah Salt Lake City, UT, USA.
  4. Department of Pathology, Hospital General Universitario Alicante, Spain.
  5. Department of Neurosurgery, Hospital La Fe Valencia, Spain.
  6. Department of Neurosurgery, Fundación Jimenez Díaz and Hospital Rey Juan Carlos Madrid, Spain.
  7. Department of Bioengineering, University of Utah Salt Lake City, UT, USA.

PMID: 25100989 PMCID: PMC4104831 DOI: 10.3389/fneng.2014.00024

Abstract

The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the central nervous system (CNS). These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns). However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.

Keywords: biocompatibility; in vivo recording; intracortical microelectrode; neural prosthesis; neurosurgery

References

  1. J Neurosci Methods. 2009 Nov 15;184(2):199-205 - PubMed
  2. Neurosurg Clin N Am. 2010 Jan;21(1):43-51 - PubMed
  3. Brain. 2013 Dec;136(Pt 12):3796-808 - PubMed
  4. J Neurophysiol. 2014 Jan;111(2):441-53 - PubMed
  5. J Spinal Cord Med. 2014 Jan;37(1):19-31 - PubMed
  6. Nat Rev Neurosci. 2009 Jul;10(7):530-40 - PubMed
  7. Sci Transl Med. 2014 Feb 5;6(222):222ra19 - PubMed
  8. J Neural Eng. 2009 Jun;6(3):035001 - PubMed
  9. PLoS Biol. 2013;11(5):e1001561 - PubMed
  10. Annu Rev Neurosci. 2009;32:249-66 - PubMed
  11. J Neurosci Methods. 2009 Aug 30;182(1):6-16 - PubMed
  12. Front Neuroeng. 2010 May 28;3:8 - PubMed
  13. Ann Biomed Eng. 1992;20(4):413-22 - PubMed
  14. J Neural Eng. 2013 Dec;10(6):066014 - PubMed
  15. Front Hum Neurosci. 2013 Dec 05;7:828 - PubMed
  16. J Neural Eng. 2013 Jun;10(3):036004 - PubMed
  17. IEEE Trans Biomed Eng. 2001 Mar;48(3):361-71 - PubMed
  18. Nature. 2006 Jul 13;442(7099):164-71 - PubMed
  19. Prog Brain Res. 2011;194:145-65 - PubMed
  20. Trends Neurosci. 1996 Aug;19(8):312-8 - PubMed
  21. Neuroscience. 1993 May;54(1):15-36 - PubMed
  22. PLoS One. 2011;6(11):e27554 - PubMed
  23. Biomaterials. 2007 Sep;28(25):3594-607 - PubMed
  24. Annu Rev Biomed Eng. 2009;11:1-24 - PubMed
  25. Annu Rev Psychol. 2010;61:169-90, C1-3 - PubMed
  26. Front Biosci (Schol Ed). 2014 Jan 01;6:65-74 - PubMed
  27. IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41 - PubMed
  28. Nat Clin Pract Neurol. 2007 Aug;3(8):444-52 - PubMed
  29. J Neural Eng. 2012 Oct;9(5):056015 - PubMed
  30. PLoS One. 2013 Dec 02;8(12):e82148 - PubMed
  31. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:644-7 - PubMed
  32. Annu Rev Biomed Eng. 2013;15:383-405 - PubMed
  33. Neurosurg Focus. 2006 May 15;20(5):E4 - PubMed
  34. Brain Res. 1996 Jul 8;726(1-2):129-40 - PubMed
  35. Eur Arch Otorhinolaryngol. 2014 Jan;271(1):3-13 - PubMed
  36. Med Device Technol. 2007 Sep;18(5):38-9 - PubMed
  37. Front Hum Neurosci. 2013 Apr 09;7:136 - PubMed
  38. Cell Tissue Res. 2012 Jul;349(1):215-27 - PubMed
  39. Nat Neurosci. 2011 May;14(5):635-41 - PubMed

Publication Types