Display options
Share it on

Front Microbiol. 2014 Jul 21;5:354. doi: 10.3389/fmicb.2014.00354. eCollection 2014.

Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery.

Frontiers in microbiology

Kira S Makarova, Mart Krupovic, Eugene V Koonin

Affiliations

  1. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA.
  2. Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur Paris, France.

PMID: 25101062 PMCID: PMC4104785 DOI: 10.3389/fmicb.2014.00354

Abstract

The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the family D archaeal polymerases.

Keywords: DNA polymerases; DNA replication; archaea; enzyme inactivation; mobile genetic elements

References

  1. Trends Microbiol. 2007 Feb;15(2):70-7 - PubMed
  2. Virology. 2007 Jul 20;364(1):237-43 - PubMed
  3. J Virol. 2013 Mar;87(6):3248-60 - PubMed
  4. FEBS Lett. 2010 Aug 4;584(15):3370-5 - PubMed
  5. Annu Rev Microbiol. 2002;56:263-87 - PubMed
  6. FEBS Lett. 2011 Feb 4;585(3):452-8 - PubMed
  7. PLoS One. 2013;8(1):e49044 - PubMed
  8. Biochem Soc Trans. 2009 Feb;37(Pt 1):108-13 - PubMed
  9. Nucleic Acids Res. 2004 Apr 30;32(8):2430-40 - PubMed
  10. Virology. 2006 Jun 20;350(1):228-39 - PubMed
  11. RNA Biol. 2013 May;10(5):803-16 - PubMed
  12. J Bacteriol. 2008 Mar;190(5):1730-42 - PubMed
  13. Nucleic Acids Res. 1994 Apr 11;22(7):1125-7 - PubMed
  14. Biol Direct. 2012 Dec 14;7:46 - PubMed
  15. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14250-5 - PubMed
  16. Biochem Soc Trans. 2011 Jan;39(1):104-6 - PubMed
  17. Nature. 2010 Jun 24;465(7301):1039-43 - PubMed
  18. Cell Rep. 2013 Sep 12;4(5):938-44 - PubMed
  19. J Mol Biol. 2005 Jul 1;350(1):53-64 - PubMed
  20. Nucleic Acids Res. 1998 Aug 15;26(16):3746-52 - PubMed
  21. Biochemistry. 2014 May 6;53(17):2793-803 - PubMed
  22. Nature. 2013 Nov 28;503(7477):544-547 - PubMed
  23. Cold Spring Harb Perspect Biol. 2013 Nov 01;5(11):a012963 - PubMed
  24. Genome Biol Evol. 2014 Jan;6(1):192-212 - PubMed
  25. EMBO J. 2009 Jul 8;28(13):1978-87 - PubMed
  26. J Biol. 2009;8(6):59 - PubMed
  27. Adv Protein Chem. 2005;71:401-40 - PubMed
  28. Mol Microbiol. 2002 Apr;44(1):283-96 - PubMed
  29. Biochem Soc Trans. 2013 Dec;41(6):1392-400 - PubMed
  30. Nucleic Acids Res. 2005 Jul 15;33(12):3875-96 - PubMed
  31. Biol Direct. 2013 Apr 22;8:9 - PubMed
  32. Nucleic Acids Res. 2014 Apr;42(6):3707-19 - PubMed
  33. DNA Repair (Amst). 2007 Dec 1;6(12):1709-25 - PubMed
  34. Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a016188 - PubMed
  35. J Mol Biol. 2006 Mar 10;356(5):1093-106 - PubMed
  36. Front Biosci (Landmark Ed). 2012 Jan 01;17:509-44 - PubMed
  37. J Virol. 2014 Feb;88(4):2354-8 - PubMed
  38. Biol Direct. 2008 Aug 06;3:32 - PubMed
  39. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3600-5 - PubMed
  40. J Bacteriol. 2013 May;195(10):2322-8 - PubMed
  41. Mol Biol Evol. 1998 Sep;15(9):1207-17 - PubMed
  42. Biochem Soc Trans. 2013 Feb 1;41(1):332-8 - PubMed
  43. Biochem Soc Trans. 2013 Feb 1;41(1):451-7 - PubMed
  44. Curr Opin Virol. 2013 Oct;3(5):558-65 - PubMed
  45. Nat Rev Microbiol. 2003 Nov;1(2):127-36 - PubMed
  46. J Virol. 2012 May;86(9):5067-79 - PubMed
  47. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  48. PLoS One. 2012;7(5):e36972 - PubMed
  49. Biol Direct. 2009 Mar 18;4:11 - PubMed
  50. J Biol Chem. 2001 Jul 20;276(29):27376-83 - PubMed
  51. J Biol Chem. 2011 Sep 9;286(36):31180-93 - PubMed
  52. J Biol Chem. 2001 Nov 23;276(47):43487-90 - PubMed
  53. Trends Microbiol. 2011 Dec;19(12):580-7 - PubMed
  54. Philos Trans R Soc Lond B Biol Sci. 2004 Jan 29;359(1441):17-23 - PubMed
  55. Annu Rev Biochem. 2002;71:333-74 - PubMed
  56. J Biol Chem. 1999 Oct 1;274(40):28751-61 - PubMed
  57. Biochemistry. 2012 Mar 6;51(9):1996-2007 - PubMed
  58. Biochemistry. 2014 May 6;53(17):2781-92 - PubMed
  59. Mutat Res. 2013 Mar-Apr;743-744:97-110 - PubMed
  60. Mutat Res. 2010 Mar 1;685(1-2):45-53 - PubMed
  61. Trends Biochem Sci. 1998 Sep;23(9):324-8 - PubMed
  62. Trends Cell Biol. 2008 Nov;18(11):521-7 - PubMed
  63. BMC Biol. 2014 May 19;12:36 - PubMed
  64. J Mol Evol. 2002 Jun;54(6):763-73 - PubMed
  65. Nucleic Acids Res. 2002 Jan 1;30(1):383-4 - PubMed
  66. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  67. Mol Biol Evol. 2010 Dec;27(12):2716-32 - PubMed

Publication Types