Display options
Share it on

Front Microbiol. 2014 Jul 17;5:357. doi: 10.3389/fmicb.2014.00357. eCollection 2014.

Production possibility frontiers in phototroph:heterotroph symbioses: trade-offs in allocating fixed carbon pools and the challenges these alternatives present for understanding the acquisition of intracellular habitats.

Frontiers in microbiology

Malcolm S Hill

Affiliations

  1. Department of Biology, Gottwald Science Center, University of Richmond Richmond, VA, USA.

PMID: 25101064 PMCID: PMC4101577 DOI: 10.3389/fmicb.2014.00357

Abstract

Intracellular habitats have been invaded by a remarkable diversity of organisms, and strategies employed to successfully reside in another species' cellular space are varied. Common selective pressures may be experienced in symbioses involving phototrophic symbionts and heterotrophic hosts. Here I refine and elaborate the Arrested Phagosome Hypothesis that proposes a mechanism that phototrophs use to gain access to their host's intracellular habitat. I employ the economic concept of production possibility frontiers (PPF) as a useful heuristic to clearly define the trade-offs that an intracellular phototroph is likely to face as it allocates photosynthetically-derived pools of energy. Fixed carbon can fuel basic metabolism/respiration, it can support mitotic division, or it can be translocated to the host. Excess photosynthate can be stored for future use. Thus, gross photosynthetic productivity can be divided among these four general categories, and natural selection will favor phenotypes that best match the demands presented to the symbiont by the host cellular habitat. The PPF highlights trade-offs that exist between investment in growth (i.e., mitosis) or residency (i.e., translocating material to the host). Insights gained from this perspective might help explain phenomena such as coral bleaching because deficits in photosynthetic production are likely to diminish a symbiont's ability to "afford" the costs of intracellular residency. I highlight deficits in our current understanding of host:symbiont interactions at the molecular, genetic, and cellular level, and I also discuss how semantic differences among scientists working with different symbiont systems may diminish the rate of increase in our understanding of phototrophic-based associations. I argue that adopting interdisciplinary (in this case, inter-symbiont-system) perspectives will lead to advances in our general understanding of the phototrophic symbiont's intracellular niche.

Keywords: Chlorella; Symbiodinium; endocytobiology; intracellular mimicry; investment strategies; phagosomes

References

  1. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8007-12 - PubMed
  2. Science. 1999 Feb 5;283(5403):843-5 - PubMed
  3. Plant Cell. 2010 Sep;22(9):2943-55 - PubMed
  4. J Membr Biol. 2003 Jun 1;193(3):137-52 - PubMed
  5. Mol Ecol. 2009 May;18(9):1823-33 - PubMed
  6. Curr Opin Struct Biol. 2002 Apr;12(2):244-54 - PubMed
  7. Mar Biotechnol (NY). 2011 Feb;13(1):32-40 - PubMed
  8. Proteomics. 2010 Mar;10(5):1002-16 - PubMed
  9. Evolution. 2014 Feb;68(2):352-67 - PubMed
  10. Cytobios. 1982;33(129):39-50 - PubMed
  11. Nature. 2006 Apr 27;440(7088):1186-9 - PubMed
  12. Biochem Biophys Res Commun. 2004 Nov 19;324(3):1024-33 - PubMed
  13. Nat Rev Immunol. 2008 Feb;8(2):131-41 - PubMed
  14. J Cell Sci. 1983 Nov;64:195-212 - PubMed
  15. J Theor Biol. 2009 Jul 7;259(1):44-57 - PubMed
  16. Evolution. 2011 Aug;65(8):2391-8 - PubMed
  17. J Immunol. 2012 Sep 15;189(6):2774-83 - PubMed
  18. Biol Bull. 2010 Dec;219(3):189-97 - PubMed
  19. J Exp Biol. 2012 Apr 15;215(Pt 8):1384-93 - PubMed
  20. PLoS One. 2008;3(10):e3611 - PubMed
  21. Mol Cell Biol. 1998 Apr;18(4):2309-23 - PubMed
  22. Exp Cell Res. 1981 Feb;131(2):387-93 - PubMed
  23. Mol Ecol. 2011 Jun;20(12):2525-42 - PubMed
  24. Microbiol Mol Biol Rev. 2012 Jun;76(2):229-61 - PubMed
  25. PLoS One. 2012;7(7):e39858 - PubMed
  26. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1023-38 - PubMed
  27. J Exp Biol. 2003 Sep;206(Pt 18):3149-57 - PubMed
  28. Am Nat. 2013 Oct;182(4):484-93 - PubMed
  29. Trends Ecol Evol. 2008 Jul;23(7):369-76 - PubMed
  30. BMC Genomics. 2006 Feb 10;7:23 - PubMed
  31. Int Rev Cell Mol Biol. 2010;279:33-77 - PubMed
  32. Mol Biol Evol. 1996 May;13(5):685-90 - PubMed
  33. Science. 2005 May 13;308(5724):1017-20 - PubMed
  34. Mol Ecol. 2010 Mar;19(6):1174-86 - PubMed
  35. Proc Biol Sci. 1996 Mar 22;263(1368):339-44 - PubMed
  36. Exp Cell Res. 1973 Sep;81(1):111-9 - PubMed
  37. J Histochem Cytochem. 2006 Jun;54(6):605-14 - PubMed
  38. Immunol Rev. 2011 Mar;240(1):72-91 - PubMed
  39. PLoS One. 2012;7(10):e47182 - PubMed
  40. Biol Bull. 2012 Aug;223(1):44-65 - PubMed
  41. BMC Genomics. 2009 Jun 05;10:258 - PubMed
  42. Nature. 2007 Jan 4;445(7123):95-101 - PubMed
  43. Methods Mol Biol. 2012;804:481-99 - PubMed
  44. Cell Tissue Res. 1985;239(1):93-103 - PubMed
  45. Immunity. 2009 Jan 16;30(1):143-54 - PubMed
  46. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051913 - PubMed
  47. Plant Cell Environ. 2008 May;31(5):679-94 - PubMed
  48. Science. 1963 Nov 15;142(3594):956-8 - PubMed
  49. Eukaryot Cell. 2013 Feb;12(2):265-77 - PubMed
  50. BMC Genomics. 2012 Jun 22;13:271 - PubMed
  51. Biol Rev Camb Philos Soc. 2012 Nov;87(4):804-21 - PubMed
  52. Front Microbiol. 2013 Jan 18;3:440 - PubMed
  53. Biol Rev Camb Philos Soc. 1969 Feb;44(1):17-90 - PubMed
  54. Mol Syst Biol. 2010 Oct 19;6:423 - PubMed
  55. Symp Soc Exp Biol. 1975;(29):145-73 - PubMed
  56. BMC Genomics. 2014 May 16;15:376 - PubMed
  57. Mol Ecol. 2013 Sep;22(17):4499-515 - PubMed
  58. Appl Environ Microbiol. 1997 Jan;63(1):115-21 - PubMed
  59. Proc R Soc Lond B Biol Sci. 1983 Aug 22;219(1214):61-82 - PubMed
  60. Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):699-712 - PubMed
  61. PLoS Genet. 2011 Jul;7(7):e1002187 - PubMed
  62. J Exp Biol. 2012 Oct 1;215(Pt 19):3467-77 - PubMed
  63. ISME J. 2012 Jul;6(7):1314-24 - PubMed
  64. Mol Ecol. 2011 Dec;20(24):5197-212 - PubMed
  65. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):245-53 - PubMed
  66. Immunol Rev. 2011 Mar;240(1):211-34 - PubMed
  67. Bioessays. 2010 Jul;32(7):615-25 - PubMed
  68. J Exp Biol. 2014 May 1;217(Pt 9):1613-9 - PubMed
  69. PLoS One. 2009 Jul 15;4(7):e6262 - PubMed
  70. Comp Biochem Physiol A Mol Integr Physiol. 2006 Aug;144(4):458-63 - PubMed

Publication Types