Display options
Share it on

Front Plant Sci. 2014 Jul 17;5:351. doi: 10.3389/fpls.2014.00351. eCollection 2014.

The role of the testa during development and in establishment of dormancy of the legume seed.

Frontiers in plant science

Petr Smýkal, Vanessa Vernoud, Matthew W Blair, Aleš Soukup, Richard D Thompson

Affiliations

  1. Department of Botany, Faculty of Sciences, Palacký University in Olomouc Olomouc, Czech Republic.
  2. INRA, UMR 1347 Agroécologie Dijon, France.
  3. Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA.
  4. Department of Experimental Plant Biology, Charles University Prague, Czech Republic.

PMID: 25101104 PMCID: PMC4102250 DOI: 10.3389/fpls.2014.00351

Abstract

Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.

Keywords: domestication; dormancy; hardseededness; legumes; proanthocyanidins; seed coat; testa; water permeability

References

  1. Plant Cell Rep. 2013 Dec;32(12):1939-52 - PubMed
  2. Plant Physiol. 1985 Oct;79(2):543-5 - PubMed
  3. Plant Cell. 2005 Oct;17(10):2619-32 - PubMed
  4. Development. 1997 Apr;124(7):1367-76 - PubMed
  5. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1766-71 - PubMed
  6. Plant J. 2004 Aug;39(3):366-80 - PubMed
  7. Eur J Clin Nutr. 1989 Aug;43(8):547-57 - PubMed
  8. Plant J. 2012 May;70(3):409-20 - PubMed
  9. Plant Sci. 2001 Apr;160(5):775-783 - PubMed
  10. Ann Bot. 2012 Jun;109(7):1277-84 - PubMed
  11. Plant Physiol. 2009 Nov;151(3):1114-29 - PubMed
  12. BMC Genomics. 2011 Jul 29;12:381 - PubMed
  13. Front Plant Sci. 2013 Sep 05;4:317 - PubMed
  14. New Phytol. 2005 Jan;165(1):9-28 - PubMed
  15. Plant Physiol. 2009 Nov;151(3):1023-9 - PubMed
  16. Planta. 1992 Apr;187(1):75-82 - PubMed
  17. J Agric Food Chem. 2010 Oct 27;58(20):10972-8 - PubMed
  18. Ann Bot. 2003 May;91(6):729-37 - PubMed
  19. Planta. 2010 Apr;231(5):1171-88 - PubMed
  20. Plant Signal Behav. 2010 Apr;5(4):359-68 - PubMed
  21. New Phytol. 2013 Apr;198(2):496-503 - PubMed
  22. Annu Rev Plant Biol. 2006;57:405-30 - PubMed
  23. Ann Bot. 2007 Nov;100(5):1053-71 - PubMed
  24. Ann Bot. 2005 Apr;95(5):737-47 - PubMed
  25. Q Rev Biol. 2009 Mar;84(1):29-50 - PubMed
  26. New Phytol. 1984 Sep;98(1):135-141 - PubMed
  27. Arabidopsis Book. 2002;1:e0021 - PubMed
  28. Plant Physiol. 2000 Aug;123(4):1593-604 - PubMed
  29. Plant Physiol. 2007 Jun;144(2):562-74 - PubMed
  30. Ann Bot. 2006 Sep;98(3):545-53 - PubMed
  31. Ann Bot. 2011 Jun;107(8):1399-404 - PubMed
  32. J Exp Bot. 2013 Jan;64(2):459-70 - PubMed
  33. Plant Cell Rep. 2014 Feb;33(2):349-62 - PubMed
  34. Plant Physiol. 1999 Aug;120(4):951-9 - PubMed
  35. Trends Plant Sci. 2014 Jun;19(6):351-60 - PubMed
  36. J Exp Bot. 2001 Dec;52(365):2283-9 - PubMed
  37. Theor Appl Genet. 2009 Jun;119(1):131-42 - PubMed
  38. PLoS One. 2010 Oct 11;5(10):e13230 - PubMed
  39. Plant Physiol. 1974 Dec;54(6):817-20 - PubMed
  40. Plant Physiol. 1948 Oct;23(4):467-84 - PubMed
  41. Planta. 1983 Mar;157(2):158-65 - PubMed
  42. Plant J. 2001 Oct;28(1):61-71 - PubMed
  43. Am J Bot. 2002 Aug;89(8):1285-8 - PubMed
  44. Mol Plant. 2011 Nov;4(6):1074-91 - PubMed
  45. Plant Physiol. 2000 Feb;122(2):403-14 - PubMed
  46. Genetics. 2003 Jan;163(1):295-309 - PubMed
  47. Ann Bot. 2007 Nov;100(5):1017-25 - PubMed
  48. J Exp Bot. 2007;58(5):1071-82 - PubMed
  49. Plant Cell. 2009 Aug;21(8):2323-40 - PubMed
  50. Ann Bot. 2012 May;109(6):1185-200 - PubMed
  51. Front Plant Sci. 2013 Jul 01;4:221 - PubMed
  52. Plant Physiol. 2010 Jun;153(2):437-43 - PubMed
  53. New Phytol. 2006;171(3):501-23 - PubMed
  54. Plant Physiol. 2011 Jun;156(2):897-912 - PubMed
  55. Plant Physiol. 2009 May;150(1):448-62 - PubMed
  56. J Agric Food Chem. 2003 Dec 31;51(27):7999-8004 - PubMed
  57. Ann Bot. 2010 Dec;106(6):927-44 - PubMed
  58. Plant Physiol. 1991 May;96(1):214-20 - PubMed
  59. Plant Cell Environ. 2012 Oct;35(10):1769-86 - PubMed
  60. Plant Physiol. 2012 Jun;159(2):759-68 - PubMed
  61. Annu Rev Plant Biol. 2005;56:253-79 - PubMed
  62. Genetics. 2008 Feb;178(2):1013-36 - PubMed
  63. Plant Physiol. 1981 May;67(5):1016-25 - PubMed
  64. BMC Plant Biol. 2011 Nov 09;11:155 - PubMed
  65. Planta. 2006 Oct;224(5):1185-96 - PubMed
  66. Plant Physiol. 2001 Jun;126(2):485-93 - PubMed
  67. Science. 2006 Jun 16;312(5780):1608-10 - PubMed
  68. Plant J. 2009 Apr;58(2):318-32 - PubMed
  69. J Exp Bot. 2007;58(3):717-32 - PubMed
  70. J Hered. 2010 Nov-Dec;101(6):757-68 - PubMed
  71. Ann Bot. 2004 Aug;94(2):213-28 - PubMed
  72. Mol Cell Proteomics. 2007 Dec;6(12):2165-79 - PubMed
  73. Planta. 2004 Apr;218(6):958-64 - PubMed
  74. PLoS One. 2012;7(8):e41304 - PubMed
  75. Plant Physiol. 2007 Nov;145(3):601-15 - PubMed
  76. Ann Bot. 2010 Aug;106(2):235-42 - PubMed
  77. Plant J. 2013 Nov;76(3):446-55 - PubMed
  78. Plant Cell. 2004 Apr;16(4):819-35 - PubMed
  79. J Proteomics. 2013 Aug 26;89:265-72 - PubMed
  80. Plant Cell. 2004;16 Suppl:S32-45 - PubMed
  81. Plant Cell. 2003 Nov;15(11):2514-31 - PubMed
  82. Plant Physiol. 2013 Oct;163(2):757-74 - PubMed
  83. Biochem Soc Trans. 2010 Apr;38(2):604-12 - PubMed
  84. Science. 1971 Oct 29;174(4008):468-74 - PubMed
  85. Plant Physiol. 1980 Oct;66(4):782-6 - PubMed
  86. Plant Cell. 1997 Jun;9(6):895-908 - PubMed
  87. Plant Physiol. 1983 May;72(1):268-71 - PubMed
  88. Plant Cell. 2007 Jan;19(1):351-68 - PubMed
  89. Plant Mol Biol. 2008 Aug;67(6):567-80 - PubMed

Publication Types