Display options
Share it on

Front Genet. 2014 Jul 22;5:228. doi: 10.3389/fgene.2014.00228. eCollection 2014.

SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida.

Frontiers in genetics

Wei Liu, Jiangbo Fan, Junhui Li, Yanzhai Song, Qun Li, Yu'e Zhang, Yongbiao Xue

Affiliations

  1. State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China.
  2. State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China.

PMID: 25101113 PMCID: PMC4106197 DOI: 10.3389/fgene.2014.00228

Abstract

Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCF(SLF-mediated) non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.

Keywords: S-RNase localization; SCFSLF; cross-pollen compatibility; self-incompatibility; self-pollen incompatibility; ubiquitin/26S proteasome system

References

  1. Nature. 1989 Dec 21-28;342(6252):955-7 - PubMed
  2. Mol Gen Genet. 1996 Mar 20;250(5):547-57 - PubMed
  3. Science. 2010 Dec 24;330(6012):1827-30 - PubMed
  4. J Biol Chem. 2009 Mar 20;284(12):7920-30 - PubMed
  5. Plant Signal Behav. 2011 Mar;6(3):420-1 - PubMed
  6. Science. 2010 Nov 5;330(6005):796-9 - PubMed
  7. J Proteome Res. 2009 Nov;8(11):5142-52 - PubMed
  8. Planta. 2005 Jun;221(4):531-7 - PubMed
  9. Plant Mol Biol. 2013 Feb;81(3):245-57 - PubMed
  10. Biochim Biophys Acta. 2004 Nov 29;1695(1-3):133-70 - PubMed
  11. Plant Cell. 2004;16 Suppl:S72-83 - PubMed
  12. Plant J. 2009 Jan;57(2):220-9 - PubMed
  13. EMBO J. 2000 Oct 16;19(20):5362-75 - PubMed
  14. Mol Phylogenet Evol. 2003 Dec;29(3):490-506 - PubMed
  15. Nat Rev Mol Cell Biol. 2004 Sep;5(9):739-51 - PubMed
  16. Plant Physiol. 2012 Jul;159(3):1252-62 - PubMed
  17. Plant Mol Biol. 2009 Jul;70(5):499-509 - PubMed
  18. J Lipid Res. 2001 Feb;42(2):225-34 - PubMed
  19. Genes Cells. 2003 Mar;8(3):203-13 - PubMed
  20. Annu Rev Plant Biol. 2005;56:467-89 - PubMed
  21. Nat Protoc. 2013 Oct;8(10):1916-39 - PubMed
  22. Annu Rev Plant Biol. 2004;55:555-90 - PubMed
  23. Genetics. 2007 Apr;175(4):1869-81 - PubMed
  24. Nature. 1994 Feb 10;367(6463):560-3 - PubMed
  25. Plant Cell. 2007 Nov;19(11):3593-609 - PubMed
  26. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12059-65 - PubMed
  27. Plant Cell. 2004 Sep;16(9):2307-22 - PubMed
  28. J Genet Genomics. 2012 Feb;39(2):93-102 - PubMed
  29. Plant Cell. 2006 Oct;18(10):2531-53 - PubMed
  30. Ann Bot. 2011 Sep;108(4):647-58 - PubMed
  31. Annu Rev Plant Biol. 2009;60:21-42 - PubMed
  32. Plant Cell. 1989 May;1(5):483-91 - PubMed
  33. Plant Cell. 2013 Feb;25(2):470-85 - PubMed
  34. Nature. 2006 Feb 16;439(7078):805-10 - PubMed
  35. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  36. Mol Plant. 2014 Mar;7(3):567-9 - PubMed
  37. PLoS One. 2009 Jun 03;4(6):e5774 - PubMed
  38. Nature. 1994 Feb 10;367(6463):563-6 - PubMed
  39. Plant J. 2002 Mar;29(5):627-36 - PubMed
  40. Plant Mol Biol. 2005 Jan;57(1):141-53 - PubMed
  41. Cell. 1996 Jul 26;86(2):263-74 - PubMed
  42. Plant J. 2005 Sep;43(5):716-23 - PubMed
  43. Nature. 2002 Apr 18;416(6882):703-9 - PubMed
  44. Plant Cell. 1994 Dec;6(12):1933-40 - PubMed
  45. Plant Physiol. 1992 May;99(1):38-45 - PubMed
  46. Nature. 2004 May 20;429(6989):302-5 - PubMed
  47. Protoplasma. 2007;232(1-2):61-7 - PubMed
  48. Plant Mol Biol. 2002 Sep;50(1):29-42 - PubMed
  49. Nature. 2000 Oct 5;407(6804):649-51 - PubMed
  50. Genetics. 1999 Jul;152(3):1123-35 - PubMed
  51. Plant Cell Physiol. 2014 May;55(5):977-89 - PubMed
  52. Plant J. 2014 Jun;78(6):1014-21 - PubMed
  53. Plant Cell. 2003 Mar;15(3):771-81 - PubMed
  54. Plant Cell. 1996 May;8(5):805-14 - PubMed
  55. PLoS One. 2014 Feb 27;9(2):e90206 - PubMed
  56. J Exp Bot. 2009;60(4):1069-81 - PubMed
  57. Plant Cell. 1990 Aug;2(8):815-26 - PubMed
  58. J Exp Bot. 2006;57(9):2001-13 - PubMed
  59. Plant J. 2002 Dec;32(6):985-96 - PubMed
  60. J Exp Bot. 2008;59(11):3187-201 - PubMed
  61. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9124-9 - PubMed
  62. Plant Reprod. 2014 Mar;27(1):31-45 - PubMed
  63. Plant Mol Biol. 1997 Dec;35(6):833-45 - PubMed
  64. J Histochem Cytochem. 1983 Jul;31(7):938-44 - PubMed
  65. EMBO J. 2000 Jan 4;19(1):94-102 - PubMed
  66. Mass Spectrom Rev. 2011 Sep-Oct;30(5):772-853 - PubMed
  67. J Exp Bot. 2009;60(4):1309-18 - PubMed
  68. Mol Genet Genomics. 2006 Jan;275(1):97-104 - PubMed
  69. Curr Opin Plant Biol. 2012 Feb;15(1):78-83 - PubMed
  70. Plant Cell. 2004 Mar;16(3):582-95 - PubMed
  71. Nat Rev Mol Cell Biol. 2001 Mar;2(3):169-78 - PubMed
  72. Plant Cell. 1994 Jul;6(7):1021-8 - PubMed
  73. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13548-53 - PubMed
  74. Histochemistry. 1981;71(1):81-8 - PubMed
  75. J Exp Bot. 2010 Apr;61(7):2027-37 - PubMed
  76. Plant Cell Physiol. 2003 Jul;44(7):764-9 - PubMed
  77. Methods Enzymol. 1974;31:583-9 - PubMed
  78. Plant J. 2010 Apr 1;62(1):52-63 - PubMed
  79. J Exp Bot. 2014 Jul;65(12):3121-31 - PubMed
  80. Plant J. 2006 Jun;46(5):780-93 - PubMed
  81. Plant Physiol. 2013 Jan;161(1):97-107 - PubMed
  82. Genetics. 2014 Feb;196(2):439-42 - PubMed

Publication Types