Display options
Share it on

Nanoscale Res Lett. 2014 Aug 03;9(1):379. doi: 10.1186/1556-276X-9-379. eCollection 2014.

Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst.

Nanoscale research letters

Abhishek Singh Dahiya, Charles Opoku, Daniel Alquier, Guylaine Poulin-Vittrant, Frederic Cayrel, Olivier Graton, Louis-Pascal Tran Huu Hue, Nicolas Camara

Affiliations

  1. Université François Rabelais de Tours, CNRS, GREMAN UMR 7347, 16 rue Pierre et Marie Curie, Tours 37071, France.

PMID: 25136283 PMCID: PMC4127525 DOI: 10.1186/1556-276X-9-379

Abstract

A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor-liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.

Keywords: Nanostructures; Nanowalls; Nanowires; Zinc cluster drift; Zinc oxide

References

  1. ACS Nano. 2011 May 24;5(5):4197-204 - PubMed
  2. Science. 2001 Jun 8;292(5523):1897-9 - PubMed
  3. Science. 2007 Apr 6;316(5821):102-5 - PubMed
  4. Nanoscale Res Lett. 2011 Dec;6(1):3 - PubMed
  5. Nat Nanotechnol. 2010 May;5(5):366-73 - PubMed
  6. ACS Nano. 2009 Jun 23;3(6):1594-602 - PubMed
  7. Small. 2010 Jan;6(2):307-12 - PubMed
  8. Small. 2008 Oct;4(10):1615-9 - PubMed
  9. Science. 2006 Apr 14;312(5771):242-6 - PubMed
  10. Nano Lett. 2006 Dec;6(12):2768-72 - PubMed
  11. Science. 2003 May 23;300(5623):1249 - PubMed
  12. Nanotechnology. 2012 Feb 10;23(5):055604 - PubMed
  13. Nat Mater. 2011 Jul 10;10(8):596-601 - PubMed
  14. Nano Lett. 2012 Jun 13;12(6):2833-8 - PubMed

Publication Types