Display options
Share it on

Front Hum Neurosci. 2014 Aug 01;8:568. doi: 10.3389/fnhum.2014.00568. eCollection 2014.

The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves.

Frontiers in human neuroscience

Nils Balser, Britta Lorey, Sebastian Pilgramm, Tim Naumann, Stefan Kindermann, Rudolf Stark, Karen Zentgraf, A Mark Williams, Jörn Munzert

Affiliations

  1. Institute for Sport Science, University of Giessen Giessen, Germany.
  2. Institute for Sport Science, University of Giessen Giessen, Germany ; Bender Institute of Neuroimaging, University of Giessen Giessen, Germany.
  3. Bender Institute of Neuroimaging, University of Giessen Giessen, Germany.
  4. Bender Institute of Neuroimaging, University of Giessen Giessen, Germany ; Institute of Sport and Exercise Sciences, Westfälische Wilhelms-University of Münster Münster, Germany.
  5. Centre for Sports Medicine and Human Performance, Brunel University London London, UK.

PMID: 25136305 PMCID: PMC4117995 DOI: 10.3389/fnhum.2014.00568

Abstract

In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.

Keywords: cerebellum; functional magnetic resonance imaging; motor expertise; sports-related anticipation; superior parietal lobe

References

  1. J Neurophysiol. 2006 Dec;96(6):3016-27 - PubMed
  2. Cerebellum. 2008;7(4):572-6 - PubMed
  3. Curr Opin Neurobiol. 2006 Apr;16(2):205-12 - PubMed
  4. J Neurosci. 1993 Mar;13(3):1202-26 - PubMed
  5. Cereb Cortex. 2010 Nov;20(11):2511-21 - PubMed
  6. Br J Psychol. 2011 Aug;102(3):519-34 - PubMed
  7. Curr Opin Neurobiol. 2005 Dec;15(6):626-31 - PubMed
  8. Trends Cogn Sci. 2007 May;11(5):211-8 - PubMed
  9. Cereb Cortex. 2009 Feb;19(2):315-26 - PubMed
  10. Hum Brain Mapp. 2011 May;32(5):677-87 - PubMed
  11. Curr Biol. 2006 Oct 10;16(19):1905-10 - PubMed
  12. Front Hum Neurosci. 2012 Feb 20;6:20 - PubMed
  13. J Physiol. 2009 Jan 15;587(2):429-42 - PubMed
  14. Trends Cogn Sci. 1998 Sep 1;2(9):338-47 - PubMed
  15. Neurosci Biobehav Rev. 2012 Jan;36(1):341-9 - PubMed
  16. Neuroimage. 2003 Nov;20 Suppl 1:S89-100 - PubMed
  17. Nature. 2000 Jan 13;403(6766):192-5 - PubMed
  18. Neuron. 2004 Apr 22;42(2):323-34 - PubMed
  19. Eur J Neurosci. 2012 May;35(10):1646-54 - PubMed
  20. Curr Biol. 2008 Jun 3;18(11):814-8 - PubMed
  21. Psychol Res. 2012 Jul;76(4):542-60 - PubMed
  22. Neuropsychology. 1998 Apr;12(2):193-207 - PubMed
  23. Nat Rev Neurosci. 2002 Mar;3(3):201-15 - PubMed
  24. Cereb Cortex. 2014 Nov;24(11):2815-21 - PubMed
  25. Neuroimage. 2010 Apr 15;50(3):1148-67 - PubMed
  26. BMC Neurosci. 2010 Jul 31;11:89 - PubMed
  27. Cereb Cortex. 2008 Feb;18(2):243-53 - PubMed
  28. J Exp Psychol Appl. 2001 Mar;7(1):60-7 - PubMed
  29. J Neurophysiol. 1997 Mar;77(3):1581-94 - PubMed
  30. Neural Netw. 1996 Nov;9(8):1265-1279 - PubMed
  31. J Neurosci. 1984 Jul;4(7):1863-74 - PubMed
  32. Neuroreport. 2010 Jan 27;21(2):94-8 - PubMed
  33. Science. 1995 Nov 3;270(5237):802-5 - PubMed
  34. Curr Biol. 2001 Sep 18;11(18):R729-32 - PubMed
  35. Hum Mov Sci. 2011 Jun;30(3):495-503 - PubMed
  36. Neuroimage. 2007 May 1;35(4):1674-84 - PubMed
  37. Cereb Cortex. 2014 Feb;24(2):396-402 - PubMed
  38. Curr Opin Neurobiol. 2006 Dec;16(6):645-9 - PubMed
  39. Neuroimage. 2009 May 15;46(1):39-46 - PubMed
  40. Exp Brain Res. 2003 Nov;153(2):146-57 - PubMed
  41. J Sports Sci. 2002 Mar;20(3):279-87 - PubMed
  42. Annu Rev Neurosci. 2013 Jul 8;36:451-66 - PubMed
  43. Cereb Cortex. 2009 Jun;19(6):1239-55 - PubMed
  44. Nature. 1991 Jan 3;349(6304):61-4 - PubMed
  45. J Exp Psychol Appl. 2002 Dec;8(4):259-70 - PubMed
  46. Neuropsychologia. 2004;42(13):1725-36 - PubMed
  47. J Sport Exerc Psychol. 2013 Feb;35(1):98-109 - PubMed
  48. Nat Neurosci. 1998 Oct;1(6):529-33 - PubMed
  49. Perception. 2001;30(2):233-52 - PubMed
  50. Neuroimage. 2004;23 Suppl 1:S208-19 - PubMed
  51. Neuroreport. 2003 Dec 2;14(17):2135-7 - PubMed
  52. Nat Rev Neurosci. 2009 Aug;10(8):585-96 - PubMed
  53. Trends Cogn Sci. 2003 Mar;7(3):125-133 - PubMed
  54. Vision Res. 2011 Apr 22;51(8):827-35 - PubMed
  55. Cereb Cortex. 2010 Feb;20(2):486-91 - PubMed
  56. Nat Neurosci. 2008 Sep;11(9):1109-16 - PubMed
  57. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  58. Hum Mov Sci. 2009 Jun;28(3):362-70 - PubMed
  59. Neurosci Lett. 2011 Aug 18;500(3):216-21 - PubMed
  60. Int J Psychophysiol. 2007 Feb;63(2):214-20 - PubMed
  61. Curr Opin Neurobiol. 1997 Aug;7(4):562-7 - PubMed
  62. J Sport Exerc Psychol. 2008 Dec;30(6):755-78 - PubMed
  63. Exp Brain Res. 1996 Nov;112(1):103-11 - PubMed
  64. Neuroimage. 2005 May 1;25(4):1325-35 - PubMed
  65. Percept Psychophys. 2008 Oct;70(7):1217-34 - PubMed
  66. Brain. 1992 Apr;115 ( Pt 2):565-87 - PubMed
  67. Hum Brain Mapp. 2014 Aug;35(8):4016-34 - PubMed
  68. Neuroscience. 2009 Sep 1;162(3):852-61 - PubMed
  69. Neuroinformatics. 2009 Spring;7(1):73-82 - PubMed
  70. J Neurosci. 2004 Nov 17;24(46):10431-9 - PubMed
  71. Cereb Cortex. 2013 Mar;23(3):570-80 - PubMed
  72. Neuroimage. 2006 Oct 15;33(1):127-38 - PubMed
  73. Cereb Cortex. 2013 Apr;23(4):824-32 - PubMed
  74. PLoS One. 2013 May 21;8(5):e64195 - PubMed
  75. J Neurosci. 2008 Oct 15;28(42):10751-65 - PubMed
  76. Brain Res Bull. 2006 Dec 11;71(1-3):233-41 - PubMed

Publication Types