Display options
Share it on

Beilstein J Org Chem. 2014 Jul 10;10:1578-88. doi: 10.3762/bjoc.10.163. eCollection 2014.

The search for new amphiphiles: synthesis of a modular, high-throughput library.

Beilstein journal of organic chemistry

George C Feast, Thomas Lepitre, Xavier Mulet, Charlotte E Conn, Oliver E Hutt, G Paul Savage, Calum J Drummond

Affiliations

  1. CSIRO Materials Science and Engineering, Bag 10, Clayton South MDC, VIC 3169, Australia.
  2. CSIRO Materials Science and Engineering, Bag 10, Clayton South MDC, VIC 3169, Australia ; School of Applied Sciences, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.

PMID: 25161714 PMCID: PMC4142986 DOI: 10.3762/bjoc.10.163

Abstract

Amphiphilic compounds are used in a variety of applications due to their lyotropic liquid-crystalline phase formation, however only a limited number of compounds, in a potentially limitless field, are currently in use. A library of organic amphiphilic compounds was synthesised consisting of glucose, galactose, lactose, xylose and mannose head groups and double and triple-chain hydrophobic tails. A modular, high-throughput approach was developed, whereby head and tail components were conjugated using the copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction. The tails were synthesised from two core alkyne-tethered intermediates, which were subsequently functionalised with hydrocarbon chains varying in length and degree of unsaturation and branching, while the five sugar head groups were selected with ranging substitution patterns and anomeric linkages. A library of 80 amphiphiles was subsequently produced, using a 24-vial array, with the majority formed in very good to excellent yields. A preliminary assessment of the liquid-crystalline phase behaviour is also presented.

Keywords: amphiphiles; carbohydrates; click chemistry; high throughput; library synthesis

References

  1. Biomacromolecules. 2012 Apr 9;13(4):1129-35 - PubMed
  2. J Am Chem Soc. 2013 Jun 19;135(24):9055-77 - PubMed
  3. Chem Commun (Camb). 2011 Oct 7;47(37):10440-2 - PubMed
  4. Langmuir. 2011 May 3;27(9):5296-303 - PubMed
  5. Acc Chem Res. 2013 Jul 16;46(7):1497-505 - PubMed
  6. Bioconjug Chem. 2007 Jan-Feb;18(1):152-9 - PubMed
  7. Org Lett. 2008 Feb 21;10(4):545-8 - PubMed
  8. Dalton Trans. 2010 Jan 14;(2):612-23 - PubMed
  9. Langmuir. 2010 May 4;26(9):6136-9 - PubMed
  10. J Org Chem. 2002 May 3;67(9):3057-64 - PubMed
  11. Biomaterials. 2012 Nov;33(32):8160-6 - PubMed
  12. Langmuir. 2010 May 4;26(9):6240-9 - PubMed
  13. J Org Chem. 2011 Apr 1;76(7):2084-93 - PubMed
  14. Colloids Surf B Biointerfaces. 2012 Jun 15;95:144-53 - PubMed
  15. Bioorg Med Chem Lett. 2012 Jan 1;22(1):591-6 - PubMed
  16. Biomacromolecules. 2012 Dec 10;13(12):4012-21 - PubMed
  17. Langmuir. 2011 Dec 20;27(24):15236-47 - PubMed
  18. Chem Soc Rev. 2012 Feb 7;41(3):1297-322 - PubMed
  19. J Comb Chem. 2007 May-Jun;9(3):477-86 - PubMed
  20. Int J Pharm. 2011 Dec 12;421(1):176-82 - PubMed
  21. Br J Pharmacol. 2002 Dec;137(8):1280-6 - PubMed
  22. Chem Soc Rev. 2013 Jun 7;42(11):4640-56 - PubMed
  23. Curr Med Chem. 2012;19(15):2399-405 - PubMed
  24. Biomaterials. 2012 Mar;33(9):2723-33 - PubMed
  25. J Am Chem Soc. 2013 Jun 26;135(25):9295-8 - PubMed
  26. Angew Chem Int Ed Engl. 1998 Jun 5;37(10):1328-1345 - PubMed
  27. Dalton Trans. 2010 Jan 21;39(3):675-96 - PubMed
  28. Angew Chem Int Ed Engl. 2002 Jul 15;41(14):2596-9 - PubMed
  29. Chemistry. 2014 Mar 3;20(10):2783-92 - PubMed
  30. Chem Commun (Camb). 2013 Mar 21;49(23):2287-9 - PubMed
  31. ACS Comb Sci. 2012 Oct 8;14(10):565-9 - PubMed
  32. J Biol Chem. 2003 Jul 18;278(29):26742-9 - PubMed
  33. NMR Biomed. 2006 Feb;19(1):142-64 - PubMed
  34. Nat Rev Drug Discov. 2009 Aug;8(8):661-77 - PubMed
  35. J Colloid Interface Sci. 2013 Mar 1;393:1-20 - PubMed
  36. Chem Soc Rev. 2007 Dec;36(12):1971-2032 - PubMed
  37. J Med Chem. 2012 Nov 26;55(22):9562-75 - PubMed

Publication Types