Display options
Share it on

Nanoscale Res Lett. 2014 Aug 20;9(1):407. doi: 10.1186/1556-276X-9-407. eCollection 2014.

Effect of Au thickness on the evolution of self-assembled Au droplets on GaAs (111)A and (100).

Nanoscale research letters

Ming-Yu Li, Mao Sui, Eun-Soo Kim, Jihoon Lee

Affiliations

  1. College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 139-701, South Korea.
  2. College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 139-701, South Korea ; Institute of Nanoscale Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

PMID: 25170335 PMCID: PMC4141912 DOI: 10.1186/1556-276X-9-407

Abstract

In this paper, we report the effect of Au thickness on the self-assembled Au droplets on GaAs (111)A and (100). The evolution of Au droplets on GaAs (111)A and (100) with the increased Au thickness progress in the Volmer-Weber growth mode results in distinctive 3-D islands. Under an identical growth condition, depending on the thickness of Au deposition, the self-assembled Au droplets show different size and density distributions, while the average height is increased by approximately 420% and the diameter is increased by approximately 830%, indicating a preferential lateral expansion. Au droplets show an opposite evolution trend: the increased size along with the decreased density as a function of the Au thickness. Also, the density shifts on the orders of over two magnitude between 4.23 × 10(10) and 1.16 × 10(8) cm(-2) over the thickness range tested. At relatively thinner thicknesses below 4 nm, the self-assembled Au droplets sensitively respond to the thickness variation, evidenced by the sharper slopes of dimensions and density plots. The results are systematically analyzed and discussed in terms of atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), cross-sectional surface line profiles, and Fourier filter transform (FFT) power spectra.

Keywords: Au thickness; GaAs surfaces; Self-assembled droplets; Size and density evolution

References

  1. Nanoscale Res Lett. 2009 Jan 06;4(3):262-8 - PubMed
  2. Nanotechnology. 2013 Aug 23;24(33):335601 - PubMed
  3. Nanotechnology. 2008 Sep 10;19(36):365604 - PubMed
  4. Nanoscale. 2013 Jun 7;5(11):5053-62 - PubMed
  5. Nanoscale Res Lett. 2013 Dec 13;8(1):525 - PubMed
  6. Nanotechnology. 2011 Jan 7;22(1):015605 - PubMed
  7. Nanotechnology. 2012 Mar 9;23(9):095602 - PubMed
  8. Phys Rev Lett. 1993 May 10;70(19):2900-2903 - PubMed
  9. J Phys Condens Matter. 2007 Apr 30;19(17):176223 - PubMed
  10. Nano Lett. 2010 Apr 14;10(4):1512-6 - PubMed
  11. Nanotechnology. 2009 Nov 11;20(45):455604 - PubMed
  12. Nanotechnology. 2009 Sep 30;20(39):395601 - PubMed
  13. Nanotechnology. 2006 Aug 28;17(16):4037-40 - PubMed
  14. Nanotechnology. 2012 Sep 28;23(38):385603 - PubMed
  15. Nano Lett. 2013 Aug 14;13(8):3607-13 - PubMed
  16. Nanotechnology. 2012 Feb 3;23(4):045601 - PubMed
  17. Phys Rev B Condens Matter. 1996 Sep 15;54(12):8844-8855 - PubMed
  18. Science. 2010 Oct 22;330(6003):489-93 - PubMed
  19. Opt Express. 2009 Aug 3;17(16):14186-98 - PubMed
  20. Nanotechnology. 2011 Jul 8;22(27):275602 - PubMed
  21. Phys Rev Lett. 1994 Dec 26;73(26):3564-3567 - PubMed
  22. Nanoscale Res Lett. 2014 Mar 12;9(1):113 - PubMed
  23. J Phys Condens Matter. 2012 Mar 14;24(10):104017 - PubMed
  24. Nano Lett. 2005 Dec;5(12):2524-7 - PubMed

Publication Types