Display options
Share it on

BMC Biophys. 2014 Aug 12;7:5. doi: 10.1186/2046-1682-7-5. eCollection 2014.

Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking.

BMC biophysics

Phanourios Tamamis, Chris A Kieslich, Gregory V Nikiforovich, Trent M Woodruff, Dimitrios Morikis, Georgios Archontis

Affiliations

  1. Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus.
  2. Department of Bioengineering, University of California, Riverside, CA 92521, USA.
  3. MolLife Design LLC, St. Louis 63141, USA.
  4. School of Biomedical Sciences, the University of Queensland, St Lucia 4072, Australia.

PMID: 25170421 PMCID: PMC4141665 DOI: 10.1186/2046-1682-7-5

Abstract

BACKGROUND: The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease.

RESULTS: We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism.

CONCLUSION: This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.

Keywords: C5a; C5aR; Class A GPCR; Complement system; Docking; Implicit solvent; Membrane protein; Molecular dynamics

References

  1. Biochem J. 1986 Sep 15;238(3):625-42 - PubMed
  2. Nature. 2011 Jul 19;477(7366):549-55 - PubMed
  3. Annu Rev Biophys Bioeng. 1977;6:151-76 - PubMed
  4. Proteins. 2010 Aug 1;78(10):2189-201 - PubMed
  5. J Biol Chem. 2001 Feb 2;276(5):3394-400 - PubMed
  6. FASEB J. 2013 Mar;27(3):855-64 - PubMed
  7. RNA. 2009 Jun;15(6):1219-30 - PubMed
  8. J Med Chem. 2005 Dec 1;48(24):7796-807 - PubMed
  9. Proteins. 2011 Mar;79(3):787-802 - PubMed
  10. Sci Rep. 2014 Jun 26;4:5447 - PubMed
  11. Nature. 2012 Mar 21;485(7398):327-32 - PubMed
  12. PLoS One. 2014 Apr 24;9(4):e95767 - PubMed
  13. Proteins. 2010 Feb 1;78(2):271-85 - PubMed
  14. Proteins. 2010 Sep;78(12):2655-67 - PubMed
  15. Biochem Pharmacol. 2003 Nov 1;66(9):1833-40 - PubMed
  16. Inflammation. 2001 Jun;25(3):171-7 - PubMed
  17. Annu Rev Biophys. 2012;41:429-52 - PubMed
  18. Curr Opin Struct Biol. 2004 Apr;14(2):217-24 - PubMed
  19. Mol Immunol. 2011 Aug;48(14):1631-42 - PubMed
  20. J Comput Chem. 2004 Aug;25(11):1400-15 - PubMed
  21. J Biol Chem. 2007 Feb 2;282(5):3105-21 - PubMed
  22. Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7 - PubMed
  23. Bioinformatics. 2006 Mar 1;22(5):623-5 - PubMed
  24. J Chem Phys. 2005 Mar 22;122(12):124706 - PubMed
  25. Biophys J. 2003 Nov;85(5):2900-18 - PubMed
  26. J Comput Chem. 2013 Apr 5;34(9):731-8 - PubMed
  27. Proteins. 2011 Nov;79(11):3166-79 - PubMed
  28. J Med Chem. 1998 Aug 27;41(18):3417-25 - PubMed
  29. Int J Biochem Cell Biol. 2009 Nov;41(11):2114-7 - PubMed
  30. Nat Immunol. 2008 Nov;9(11):1225-35 - PubMed
  31. J Phys Chem B. 1998 Apr 30;102(18):3586-616 - PubMed
  32. Bioinformatics. 2006 Nov 1;22(21):2695-6 - PubMed
  33. Biochemistry. 2007 Apr 24;46(16):4734-44 - PubMed
  34. Nat Chem Biol. 2012 Jul 18;8(8):670-3 - PubMed
  35. Nature. 2012 Feb 22;482(7386):552-6 - PubMed
  36. Biopolymers. 2008;90(6):803-15 - PubMed
  37. J Comput Chem. 2009 Jul 30;30(10):1545-614 - PubMed
  38. Nature. 2012 May 16;485(7398):395-9 - PubMed
  39. Br J Pharmacol. 2007 Oct;152(4):429-48 - PubMed
  40. Biochemistry. 2008 Mar 11;47(10):3117-30 - PubMed
  41. J Biol Chem. 2005 May 6;280(18):17831-40 - PubMed
  42. J Chem Inf Model. 2014 Apr 28;54(4):1174-88 - PubMed
  43. Biophys J. 2013 Sep 17;105(6):1502-14 - PubMed
  44. Pharmacol Rev. 2013 Jan;65(1):500-43 - PubMed
  45. Appl Opt. 1987 Dec 1;26(23):4919-30 - PubMed
  46. Biochemistry. 2001 Nov 20;40(46):14047-52 - PubMed
  47. Chem Biol Drug Des. 2012 May;79(5):703-18 - PubMed
  48. J Comput Chem. 2003 Aug;24(11):1348-56 - PubMed
  49. Biochemistry. 1993 Jan 19;32(2):412-20 - PubMed
  50. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W590-4 - PubMed
  51. J Biol Chem. 2008 Mar 21;283(12):7763-75 - PubMed
  52. Arthritis Rheum. 2002 Sep;46(9):2476-85 - PubMed
  53. Eur J Pharm Sci. 2008 Apr 23;33(4-5):390-8 - PubMed
  54. Nature. 2012 Jan 25;482(7386):547-51 - PubMed
  55. Biophys J. 2005 Dec;89(6):3780-9 - PubMed
  56. Neuromolecular Med. 2010 Jun;12(2):179-92 - PubMed
  57. J Comput Chem. 2011 Apr 30;32(6):1183-94 - PubMed
  58. Mol Pharmacol. 2004 Apr;65(4):868-79 - PubMed
  59. Proteins. 2012 Jan;80(1):71-80 - PubMed
  60. Annu Rev Biophys Biomol Struct. 2007;36:21-42 - PubMed
  61. J Med Chem. 1999 Jun 3;42(11):1965-74 - PubMed

Publication Types